
Counting Maximal Satisfiable Subsets

Jaroslav Bendı́k,1 Kuldeep S. Meel 2

1 Masaryk University, Brno, Czech Republic
2 National University of Singapore, Singapore
xbendik@fi.muni.cz, meel@comp.nus.edu.sg

Abstract

Given an unsatisfiable set of constraints F , a maximal satisfi-
able subset (MSS) is a maximal subset of constraints C ⊆ F
such that C is satisfiable. Over the past two decades, the
steady improvement in runtime performance of algorithms
for finding MSSes has led to increased adoption of MSS-
based techniques in a wide variety of domains. Motivated by
the progress in finding an MSS, the past decade has witnessed
a surge of interest in the design of algorithmic techniques to
enumerate all the MSSes, which has subsequently led to a dis-
covery of new applications utilizing enumeration of MSSes.
The development of techniques for finding and enumeration
of MSSes mirrors a similar phenomenon of finding and enu-
meration of SAT solutions in the early 2000s, which subse-
quently motivated the design of algorithmic techniques for
model counting. In a similar spirit, we undertake a study to
investigate the feasibility of MSS counting techniques. In
particular, the focus point of our investigation is to answer
whether one can design efficient MSS counting techniques
that do not rely on explicit MSS enumeration. The primary
contribution of this work is an affirmative answer to the above
question in the form of a novel algorithm. The algorithm uses
a novel architecture of a wrapperW and a remainderR such
that the desired MSS count can be expressed as |W|−|R|. To
efficiently compute |W| and |R|, the algorithm relies on the
advances in projected model counting. Our empirical evalu-
ation demonstrates that our approach can scale to instances
clearly beyond the reach of enumeration-based techniques.

Introduction
Logical constraints have emerged as a prominent represen-
tation language to model environments and agents. A set of
constraints is called satisfiable if there exists an assignment
to variables such that all the constraints are satisfied. Simi-
larly, a set of constraints is unsatisfiable (also referred to as
over-constrained) if there does not exist an assignment that
would satisfy the constraints (Meseguer et al. 2003). If we
are given an unsatisfiable set of constraints, the goal is of-
ten to analyze the unsatisfiability. In such cases, two notions
are of particular interest: a Minimal Unsatisfiable Subset
(MUS), which is a minimal subset of constraints that is un-
satisfiable, and a Maximal Satisfiable Subset (MSS), which
is a maximal subset of constraints that is satisfiable (Liffiton

Copyright © 2021, Association for the Advancement of Artificial
Intelligence (www.aaai.org). All rights reserved.

and Sakallah 2008; Belov, Lynce, and Marques-Silva 2012;
Reiter 1987). A dual notion to an MSS is that of a Mini-
mal Correction Subset (MCS), which is a minimal subset of
constraints that need to be relaxed. Formally, given a set of
constraints F , a set C ⊆ F is a MSS of F iff F \ C is a
MCS of F .

The design of modern AI systems often encounters over-
constrained systems and in such scenarios, MCSes and
MSSes often play a major role (Bailey and Stuckey 2005;
Liffiton and Sakallah 2008). In particular, in the field of di-
agnosis of systems, an MCS represents the constraints that
need to be relaxed for the system to be conflict-free. Sim-
ilarly, in the context of a belief update and argumentation,
an MSS plays a key role in the update of belief in the
presence of an incoming contradictory belief. We refer the
reader to (Besnard, Grégoire, and Lagniez 2015) for fur-
ther discussion. Often, finding a single MSS (resp. MCS)
is not sufficient, and we seek to enumerate all MSSes or
to count the number of MSSes. Especially, the MSS count
serves as a good diagnostic metric (Thimm 2018; Hunter
and Konieczny 2008), or as an indicator of the feasibility of
the complete MSS enumeration.

Our interest in counting the number of MSSes is mo-
tivated by the rise of Beyond NP paradigm wherein the
progress in the design of efficient techniques for satisfiabil-
ity paved the way for interest in the design of efficient tech-
niques for problems such as counting, sampling, optimiza-
tion, and the like. In particular, the past two decades have
witnessed a proliferation of efficient techniques for model
counting, also denoted as #SAT. It is worth remarking that
initial studies into model counting were motivated by appli-
cations in Bayesian inference but the subsequent availability
of efficient model counting techniques have now led to sev-
eral new applications ranging from neural network verifica-
tion (Baluta et al. 2019), quantified information flow (Biondi
et al. 2018), computational biology (Sashittal and El-Kebir
2020), network reliability, and the like. In this regard, we
view that given the availability of efficient techniques for
finding an MSS/MCS, it is the right time to pursue an in-
vestigation into the design of efficient counting techniques
for MSSes/MCSes, and the availability of efficient counting
techniques for MCSes/MSSes would lead to a discovery of
a diverse set of applications for MSS counting.

Similarly to the early years of research into #SAT, the

The Thirty-Fifth AAAI Conference on Artificial Intelligence (AAAI-21)

3651

best-known technique, as of now, to perform the MSS count-
ing is to employ state of the art techniques for complete MSS
enumeration. While MSS enumeration techniques have im-
proved over the years, the complete MSS enumeration is
often practically intractable since there can be up to expo-
nentially many MSSes w.r.t. the size of the input constraint
set. In this context, the primary research question that we
seek to investigate is whether we can design MSS count-
ing techniques that do not necessarily rely on enumeration?.
We envision development of MSS counting techniques to
take advantage of the progress in the model counting tech-
niques. Given that the problem of finding an MSS is in
FPNP[logn] (i.e., harder than the classical SAT problem), a
natural target problem is projected model counting, a gener-
alization of the classical model counting problem; the pro-
jected model counting is known to be #NP-hard in contrast
to #P-completeness of classical model counting.

The primary contribution of this paper is an affirmative
answer to the above question. In particular, we design a new
algorithmic framework that uses a novel architecture of a
wrapper W and a remainder R such that the desired MSS
count corresponding to the formula F is |W| − |R|. We en-
code the wrapperW and the remainder R via Boolean for-
mulas W and R with suitable projection sets such that the
projected model count of W and R is equal to |W| and |R|
respectively. We present four different strategies for the con-
struction of wrappers (and their corresponding remainders
) and observe the soundness of a composition of different
wrappers. The reduction to projected model counting allows
us to build on recent advances in the design of efficient com-
ponent caching-based projected model counting techniques.
To demonstrate the empirical effectiveness of our approach,
we implemented a Python-based prototype and performed
a detailed empirical analysis. Out of 1200 benchmarks, the
enumeration-based techniques can solve 353 benchmarks
while our approach can solve 510 benchmarks.

Prelimilaries and Problem Formulation
We use standard definitions for propositional logic. A propo-
sitional formula F is built over a set of literals, where a lit-
eral is either a Boolean variable or its negation. Vars(F)
denotes the set of variables used in F . A valuation π of
a finite set A of variables is a mapping from A to {1, 0}.
Vals(F) denotes the set of all valuations of Vars(F). Given
a valuation π and a formula F , we write F [π] to denote
the substitution of each variable x in the domain of π by
the value π(x); furthermore, we apply trivial simplifica-
tions, e.g., G ∨ 0 = G, G ∧ 0 = 0, etc. Observe that if
A ⊇ Vars(F), then F [π] is simplified either to 1 or to 0.

If A ⊇ Vars(F) and F [π] = 1, we write π |= F and
we call π a model of F ; otherwise, if F [π] = 0, we write
π 6|= F . A formula is satisfiable iff it has a model, and,
otherwise, it is unsatisfiable. We write MF to denote the set
of all models of a formula F . Furthermore, for a set A of
variables such thatA ⊆ Vars(F), we writeMF↓A to denote
the projection of MF on A, and for π ∈ MF , we write π↓A
to denote the projection of π on A. Two formulas F and G
are equivalent, denoted F ≡ G, iff MF = MG.

0000

1000010000100001

110010100110100101010011

1110110110110111

1111

Figure 1: Illustration of P(F) from the Example 1. We de-
note individual subsets of F as bit-vectors, e.g., {f1, f3} is
written as 1010. The subsets with a dashed border are the
unsatisfiable subsets, and the others are satisfiable subsets.
The MSSes are filled with a background color.

A CNF formula is a conjunction of disjunctions (clauses)
of literals. A CNF formula can be also viewed as a mul-
tiset of clauses where a clause is a set of literals; the two
representations are used interchangeably and are clear from
the context. Throughout the whole text, we use F to denote
the input CNF formula of interest. We use capital letters,
e.g., S,K,N , or blackboard bold letters, e.g., W, R, to de-
note other formulas, small letters, e.g., f, f1, fi, to denote
clauses, and small letters, e.g., x, x′, y, to denote variables.
Finally, given a set X , we write P(X) to denote the power-
set of X , and |X| to denote the cardinality of X .
Definition 1 (MSS). A set N , N ⊆ F , is a maximal satis-
fiable subset (MSS) of F iff N is satisfiable and every N ′,
such that N (N ′ ⊆ F , is unsatisfiable.
Definition 2 (MCS). A set N , N ⊆ F , is a minimal cor-
rection subset (MCS) of F iff F \ N is satisfiable and for
all N ′, such that N ′ (N , the set F \ N ′ is unsatisfiable.
Equivalently, N is a MCS of F iff F \N is a MSS of F .

Note that the maximality is the set maximality and not the
maximum cardinality as e.g. in the MaxSAT problem. Con-
sequently, there can be MSSes with different cardinalities,
and in total, there can be up to exponentially many MSSes
of F w.r.t. |F | (see the Sperner’s theorem (Sperner 1928)).
The same applies also to MCSes. We write MSSF to denote
the set of all MSSes of F , MCSF to denote the set of all MC-
Ses of F , SSF to denote the set of all satisfiable subsets of F ,
and nonMSSF to denote the set SSF \ MSSF of all satisfiable
subsets of F that are not MSSes.
Example 1. We demonstrate the concepts of MSSes
and MCSes on an example, illustrated in Fig. 1. As-
sume that F = {f1 = {x1}, f2 = {¬x1}, f3 =
{x2}, f4 = {¬x1,¬x2}}. There are 3 MSSes: MSSF =
{{f2, f3, f4}, {f1, f4}, {f1, f3}}, and thus also 3 MCSes:
MCSF = {{f1}, {f2, f3}, {f2, f4}}.

Problem Definitions
In this paper, we are concerned with the following three
problems.
Name: #MSS
Input: A formula F .
Output: The number |MSSF | of MSSes of F .

3652

Name: #MCS
Input: A formula F .
Output: The number |MCSF | of MCSes of F .

Name: proj-#SAT
Input: A formula F and a set of variables S ⊆ Vars(F).
Output: The number MF↓S of models of F projected on S.

Our goal is to solve the #MCS and #MSS problems. Since
MCSes are complements of MSSes, the two problems are
equivalent. Thus, in the rest of the paper, we focus only on
the #MSS problem. Finally, we do not focus on solving the
proj-#SAT problem; instead, we propose several reduc-
tions of #MSS to proj-#SAT.

Related Work
MSS Counting As far as we know, there is no algorithm
dedicated to counting MSSes. A straightforward approach
to determine the count is to enumerate all the MSSes via
an MSS enumeration algorithm, e.g., (Bailey and Stuckey
2005; Stern et al. 2012; Liffiton et al. 2016; Marques-Silva
et al. 2013; Bendı́k et al. 2016; Narodytska et al. 2018;
Previti et al. 2018; Bendı́k and Černá 2020), and then simply
count the enumerated MSSes. However, the complete MSS
enumeration is often practically intractable, since there can
be exponentially many MSSes w.r.t. |F | and thus, the MSSes
just cannot be explicitly enumerated in a reasonable time.

Another possible solution how to count MSSes (MCSes)
is based on a well-known duality between MCSes and so-
called minimal unsatisfiable subsets (MUSes) of F . A set N
is a MUS of F iff N is unsatisfiable and ∀f ∈ N the set
N \ {f} is satisfiable. The hitting set duality (Reiter 1987;
de Kleer and Williams 1987) between MUSes and MCSes
says that every MCS is a minimal hitting set of the set of all
MUSes of F . Consequently, one can first use a MUS enu-
meration tool, e.g., (Bailey and Stuckey 2005; Stern et al.
2012; Liffiton et al. 2016; Bacchus and Katsirelos 2015,
2016; Narodytska et al. 2018; Bendı́k, Černá, and Beneš
2018; Liu and Luo 2018; Bendı́k and Černá 2020a,b), to
identify all MUSes of F , and then count the number of min-
imal hitting sets of the MUSes. The problem is that there can
be also exponentially many MUSes w.r.t. |F |, which makes
the MUS enumeration also often practically intractable.

It is also worth remarking a recent hashing-based ap-
proach, called AMUSIC, to approximate counting of MUSes
of a given formula (Bendı́k and Meel 2020). AMUSIC iden-
tifies an approximate MUS count via polynomially many
calls of a ΣP3 oracle. In contrast, we focus on the exact count-
ing and while the notions of MUSes and MSSes share a close
relationship, we are unaware of any efficient reduction of the
MSS counting problem to the MUS counting problem.

Model Counting In his seminal paper (Valiant 1979),
Valiant showed that the problem of propositional model
counting (i.e., proj-#SAT when S = V ars(F)) is #P-
complete. Durand, Hermann, and Kolaitis (2005) showed
that the general problem of proj-#SAT is #NP-hard. From
a practical perspective, the earliest work on model count-
ing dates to Birnbaum and Lozinskii (1999), which sought

to rely on smarter enumeration strategies of partial solu-
tions. Subsequently, Bayardo and Pehoushek (Bayardo Jr
and Pehoushek 2000) introduced the notion of component
caching, wherein a residual formula after substituting the
current partial assignment can be partitioned into different
subsets of clauses such that these subsets do not share vari-
ables. Each of these subsets is called a component, and the
model count of the formula is obtained by multiplying the
corresponding counts for each of the components. There-
fore, the model count is often determined by explicitly iden-
tifying only a fraction of all models. Caching scheme is used
to avoid recomputation as similar components appear in dif-
ferent parts of the search space. Over the past two decades,
there has been a series of algorithmic and system-driven
improvements of component caching-based model count-
ing techniques (Sang et al. 2004; Sang, Beame, and Kautz
2005; Thurley 2006; Muise et al. 2012; Sharma et al. 2019).
There has been also an extensive research on compilation-
based model counting including e.g. C2D (Darwiche 2004),
SDD (Darwiche 2011), and D4 (Lagniez and Marquis 2017).

Over the past 5 years, there has been a concentrated
effort on developing efficient projected model counting
techniques (Chakraborty et al. 2014; Aziz et al. 2015;
Chakraborty, Meel, and Vardi 2016; Möhle and Biere 2018;
Sharma et al. 2019; Lagniez and Marquis 2019). These tech-
niques rely on appropriate modifications of standard propo-
sitional model counters (as described above). In this work,
we rely on the state of the art projected model counter
GANAK (Sharma et al. 2019), which was part of the system
that won the Projected model counting track at the recently
organized model counting competition.

Counting the Number of MSSes
Basic Idea
Our approach for finding the MSS count |MSSF | is based on
a simple observation: one can count the number |SSF | of all
satisfiable subsets of F , the number |nonMSSF | of satisfiable
subsets that are not MSSes, and then do the math: |MSSF | =
|SSF |−|nonMSSF |. In fact, even a more general observation
holds:

Definition 3 (wrapper and remainder). A set W of subsets
of F is a wrapper iff MSSF ⊆ W ⊆ SSF . Futhermore, the
remainder ofW is the setR =W ∩ nonMSSF .

Proposition 1. Let W be a wrapper and R its remainder.
Then |MSSF | = |W| − |R|.

Proof. SSF = MSSF ∪nonMSSF , and MSSF ∩nonMSSF = ∅,
hence MSSF =W \ nonMSSF =W \R, and sinceR ⊆ W ,
it holds |MSSF | = |W| − |R|.

Our approach for counting MSSes consists of the follow-
ing steps. First, we find a suitable wrapper W and the cor-
responding remainder R. Then, we encode the wrapper W
and the corresponding remainder R with two formulas, W
and R, such that each projected model of W and R corre-
sponds to an element ofW and R, respectively. Finally, we
use a projected model counting tool to count the models of
W and R, and hence to determine |W| and |R| which yields

3653

also the MSS count |MSSF | (Proposition 1). In the following
section, we provide details on what is and how to find a suit-
able wrapper, how to build the formulas W and R, and what
is the projection set.

Wrappers and Remainders
In this section, we gradually present 4 different wrap-
pers W1, . . . ,W4 and their corresponding remainders
R1, . . . ,R4. For each wrapper Wi and its remainder Ri,
we also build the corresponding formulas Wi and Ri. Sub-
sequently, we show how to combine multiple wrappers into
a single, possibly more efficient, wrapper.

WrapperW1 Our first wrapperW1 is simply the set SSF
of all satisfiable subsets of F , and the corresponding remain-
der R1 is thus SSF ∩ nonMSSF = nonMSSF . We build the
formula W1 using the variables Vars(F) of F and an addi-
tional set of activation variables A = {af | f ∈ F}:

W1 =
∧
f∈F

(f ∨ ¬af) (1)

Intuitively, by setting a variable af to 1, we activate the
sub-clause f in the clause f ′ = (f ∨ ¬af) of W1 since sat-
isfying f is then the only way to satisfy f ′. Let us denote by
AF (π) the one-to-one mapping (bijection) between a valu-
ation π of A and the corresponding set of activated clauses
of F , i.e., AF (π) = {f ∈ F |π(af) = 1}.
Proposition 2. For every valuation π of A, π ∈ MW1↓A iff
AF (π) ∈ W1. Consequently, |MW1↓A| = |W1|.

Proof. ⇒: Let π′ be a model of W1 such that π′
↓A = π.

We show that π′ |= AF (π), hence AF (π) is satisfiable and
belongs toW1. For every f ∈ AF (π), we know that π′ |=
(f ∨ ¬af). Moreover, by the definition of AF (π), π(af) =
1 = π′(af), i.e., π′ 6|= ¬af , and thus π′ |= f .
⇐: Let N be an element ofW1 and φ its model. We define
a valuation π′ of W1 as π′(x) = φ(x) if x ∈ Vars(F),
π′(af) = 0 if f 6∈ N , and π′(af) = 1 if f ∈ N . Observe
that AF (π′

↓A) = N . Furthermore, π′ |= W1: every clause
(f ∨ ¬af) ∈ W1 such that f ∈ N is inherently satisfied by
φ, and every clause (f ∨ ¬af) ∈ W1 such that f 6∈ N is
satisfied by π′(af) = 0. Hence, π = π′

↓A ∈MW1↓A

To build the formula R1 that encodes the remainderR1 =
SSF ∩ nonMSSF , i.e., the set of all satisfiable subsets of F
that are not MSSes, we introduce another setB of activation
variables B = {bf | f ∈ F}. Similarly as in the case of A,
given a valuation π of B, let us by BF (π) denote the subset
{f ∈ F |π(bf) = 1} of F . By the definition of a MSS,
a satisfiable subset N of F is not a MSS iff there exists a
satisfiable N ′ such that N (N ′ ⊆ F . We use AF (π) and
BF (π) to encode such N and N ′, respectively, in R1:

R1 = W1 ∧
∧
f ′∈F ′

(f ′ ∨ ¬bf) ∧
∧
f∈F

(af =⇒ bf)∧

∨
f∈F

(¬af ∧ bf)
(2)

Intuitively, the first conjunct W1 encodes that AF (π) is
satisfiable, the second conjunct encodes that BF (π) is sat-
isfiable, and the last two conjuncts express that AF (π) (
BF (π). Note that since both the first conjuncts reason about
satisfiability of subsets of F , we use in the second conjunct
a primed version F ′ of F , i.e. a copy of F where each literal
is substituted by its primed version.

Proposition 3. For every valuation π of A, π ∈ MR1↓A iff
AF (π) ∈ R1. Consequently, |MR1↓A| = |R1|.

Proof. ⇒: Let π′ be a model of R1 such that π′
↓A = π.

Since R1 subsumes W1, π′ |= W1, and hence by Propo-
sition 2 AF (π) is satisfiable. The set BF (π′

↓B) is defined
and constrained in R1 analogously to AF (π), thus BF (π′

↓B)

is also satisfiable. Furthermore, AF (π) (BF (π′
↓B) since

π′ |=
∧
f∈F (af =⇒ bf) ∧

∨
f∈F (¬af ∧ bf).

⇐: Let N be an element of R1, N ′ a satisfiable superset of
N , φ a model of N , and φ′ a model of N ′. We build a model
π′ of R1 as π′(x) = φ(x) if x ∈ Vars(F), π′(af) = 0
if f 6∈ N , π′(af) = 1 if f ∈ N , π′(x) = φ′(x′) if
x′ ∈ Vars(F ′), π′(bf) = 0 if f 6∈ N ′, and π′(bf) = 1
if f ∈ N ′. Analogously to the proof of Proposition 2, we
know that π′ |= W1∧

∧
f ′∈F ′(f ′∨¬bf). As for the remain-

ing part of R1, since N (N ′, we have that π′(af) = 1
implies π′(bf) = 1 for every f ∈ F , and that there is at
least one f ∈ F such that π′(af) = 0 and π′(bf) = 1.

Based on the above observations, we can use a projected
model counter to determine the cardinalities |W1| and |R1|,
and then employ Proposition 1 to deduce the MSS count.
However, due to the complexity of projected model count-
ing, determining the model counts for W1 and R1 can be
practically intractable. In general, there are two main crite-
ria that affect the practical efficiency of the projected model
counting. One criterion is the cardinality of the projection
set, which is in the case of W1 |A| = |F |. The other crite-
rion is the number of the models, i.e., |W1|, which can be
exponential w.r.t. |F | since there are 2|F | subsets of F and
all of them (excluding the whole F) can be satisfiable. In
the following, we propose three other wrappers (and corre-
sponding remainders) that tend to optimize these two crite-
ria by providing a better description of MSSes. All formu-
las that encode the following wrappers and their remainders
use the same variables as in the case of W1 and R1, i.e.,
Vars(F) ∪ Vars(F ′) ∪ A ∪ B. We also use the notation
AF (π) and BF (π) to map valuations of A and B, respec-
tively, to subsets of F .

Wrapper W2 Our second wrapper, W2, exploits the in-
tersection IMSSF of all MSSes of F . Clearly, for every MSS
N ∈ MSSF it holds that IMSSF ⊆ N . Thus, we could define
the next wrapper as the set of all satisfiable subsets of F that
are supersets of IMSSF . Unfortunately, computing the inter-
section can be very expensive (see below), thus, we exploit
a more general observation:

Observation 1. For every MSSN ∈ MSSF and every under-
approximation I of IMSSF , i.e., I ⊆ IMSSF , it holds that
I ⊆ N .

3654

Given an under-approximation I of IMSSF , we define the
second wrapper as W2 = {N ∈ SSF | I ⊆ N}. The for-
mulas W2 and R2 that encodeW2 andR2, respectively, are
defined as follows:

W2 = W1 ∧
∧
f∈I

af (3)

R2 = W2 ∧ R1 (4)

Proposition 4. For every valuation π of A, π ∈ MW2↓A iff
AF (π) ∈ W2. Consequently, |MW2↓A| = |W2|.

Proof. ⇒: W2 subsumes W1, thus for every π ∈ MW2↓A
the set AF (π) is satisfiable (Proposition 2), and since f ∈
AF (π) iff π |= af ,

∧
f∈I af ensures that I ⊆ AF (π).

⇐: GivenN ∈ W2 and a model φ ofN , we build a valuation
π′ of W2 as π′(x) = φ(x) if x ∈ Vars(F), π′(af) = 0 if
f 6∈ N , and π′(af) = 1 if f ∈ N . Similarly as in the
proof of Proposition 2, observe that AF (π′

↓A) = N and that
π′ |= W2, thus π = π′

↓A ∈MW2↓A.

Proposition 5. For every valuation π of A, π ∈ MR2↓A iff
AF (π) ∈ R2. Consequently, |MR2↓A| = |R2|.

Proof. MR2↓A = M(W2∧R1)↓A = MW2↓A ∩ MR1↓A =
{π |AF (π) ∈ W2} ∩ {π |AF (π) ∈ R1} = {π |AF (π) ∈
W2 ∩R1} = {π |AF (π) ∈ R2}. The other direction holds
since AF is a one-to-one mapping (bijection).

Note that by enforcing the variables {af | f ∈ I} to
be set to 1, we effectively reduce the size of the pro-
jection set A since all models of W2 (and R2) agree
on the assignment to these variables. In other words,
|MW2↓A| = |MW2↓(A\{af | f∈I})| (and |MR2↓A| =
|MR2↓(A\{af | f∈I})|). Based on our practical experience, the
IMSSF is often relatively large, i.e., I can be also relatively
large, and thus we can significantly reduce the projection set.

The remaining question is how to compute either ex-
actly IMSSF or at least its under-approximation I . We are
not aware of any work that would be dedicated to com-
puting the intersection IMSSF of all MSSes of F . Yet, as
shown in (Kullmann 2000a), it holds that IMSSF = F \
UMUSF where UMUSF is the union of all minimal unsatisfi-
able subsets (MUSes) of F . Unfortunately, based on a recent
study (Mencı́a et al. 2019), computing UMUSF , and hence
also IMSSF , is often practically intractable even for rela-
tively small formulas. On the other hand, it is often possible
to cheaply compute a good over-approximation of UMUSF
via the concepts of autark variables and lean kernel. A set
A ⊆ Vars(F) is an autark of F iff there exists a truth
assignment to A such that every clause of F that contains
a variable from A is satisfied by the assignment (Monien
and Speckenmeyer 1985). It is known (Kleine Büning and
Kullmann 2009; Kullmann 2000b) that the union of two au-
tark sets is also an autark set, and thus there exist a unique
largest autark set of F . The lean kernel K of F is the set
of all clauses that do not contain any variable from the
largest autark set. It holds (Kleine Büning and Kullmann
2009; Kullmann 2000b) that the lean kernel K of F is an

over-approximation of UMUSF . Consequently, F \ K is an
under-approximation of IMSSF . We employ an approach
from (Marques-Silva et al. 2014) to compute the lean ker-
nel K and then use I = F \K to build the wrapperW2.

Similarly as we used the intersection IMSSF , one might
think of exploiting the union UMSSF of all MSSes; clearly,
every MSS of F is contained in UMSSF . Thus, at first glance,
it makes sense to build a wrapper that contains all satisfiable
subsets of F that are subsets of UMSSF . Yet, we observe that
UMSSF = F and thus the use of the union would not bring
any benefit compared toW1:

Proposition 6. For every formula F (with no empty clause)
and the union UMSSF of all MSSes of F , it holds that F =
UMSSF .

Proof. By contradiction, assume a clause f ∈ F that is not
contained in any MSS of F . Since f is non-empty, it is nec-
essarily satisfiable, and hence either {f} is a MSS of F or
there exists an MSS N of F such that N ⊇ {f}.

WrapperW3 Our next wrapper,W3, is based on the fol-
lowing characterization of MSSes:

Proposition 7. For every MSS N of F there exists a valua-
tion φ of Vars(F) such that φ |= N and for every f ∈ F \N
it holds that φ 6|= f .

Proof. N is satisfiable, thus it has a model. For every model
φ of N , if φ |= f for some f ∈ F \N , then φ |= N ∪ {f}
which contradicts that N is a MSS.

The corresponding wrapper for the property stated in
Propositon 7 is W3 = {N ∈ SSF | ∃φ ∈ Vals(F).φ |=
N ∧

∧
f∈F\N ¬f}. The formulas W3 and R3 encodingW3

andR3, respectively, are the following:

W3 = W1 ∧
∧
f∈F

(¬af → ¬f) (5)

R3 = W3 ∧ R1 (6)

Proposition 8. For every valuation π of A, π ∈ MW3↓A iff
AF (π) ∈ W3. Consequently, |MW3↓A| = |W3|.

Proof. ⇒: W3 subsumes W1, thus for every model π′ of
W3 such that π = π′

↓A it holds that π′ |= AF (π) (Proposi-
tion 2). Furthermore, by the definition of AF , f 6∈ AF (π) iff
π |= ¬af (i.e., π(af) = 0). Thus, the clauses

∧
f∈F (¬af →

¬f) of W3 ensure that for all f ∈ F \ AF (π) it holds that
π′ 6|= f . Hence, π′ is the model φ from the definition ofW3.
⇐: Given N ∈ W3 and a model φ of N ∧

∧
f∈F\N ¬f

(by the definition ofW3), we build a valuation π′ of W3 as
π′(x) = φ(x) if x ∈ Vars(F), π′(af) = 0 if f 6∈ N , and
π′(af) = 1 if f ∈ N . Similarly as in the proof of Proposi-
tion 2, observe that AF (π′

↓A) = N and that π′ |= W3, thus
π = π′

↓A ∈MW3↓A.

Proposition 9. For every valuation π of A, π ∈ MR3↓A iff
AF (π) ∈ R3. Consequently, |MR3↓A| = |R3|.

3655

Proof. MR3↓A = M(W3∧R1)↓A = MW3↓A ∩ MR1↓A =
{π |AF (π) ∈ W3} ∩ {π |AF (π) ∈ R1} = {π |AF (π) ∈
W3 ∩R1} = {π |AF (π) ∈ R3}. The other direction holds
since AF is a one-to-one mapping (bijection).

WrapperW4 Our next wrapper,W4, is based on another
property of MSSes. Intuitively, assume an MSS N of F and
a model φ of Vars(F). We observe that for every clause
f ∈ F \N and every literal l of the clause, there is a clause
g ∈ N that forces l to be falsified. If there would be l that is
not forced to be falsified, then the model φ can be relaxed to
a model φ′ that would satisfyN ∪{f} (which is not possible
since N is a MSS). Formally:

Proposition 10. Let N be an MSS of F and φ a valuation
of Vars(F). If φ |= N , then φ |=

∧
f∈F\N P, where P =∧

l∈f
∨
g∈{g∈N | ¬l∈g}

∧
k∈g\{¬l} ¬k.

Proof. By contradiction, let φ be a model of N such that
φ 6|=

∧
f∈F\N P. Hence, there exists f ∈ F \ N and l ∈

f such that φ 6|=
∨
g∈{g∈N | ¬l∈g}

∧
k∈g\{¬l} ¬k. In other

words, for every clause g ∈ G = {g ∈ N | ¬l ∈ g} there is a
literal k ∈ g, k 6= ¬l, with φ |= k. Now, assume that we turn
φ into a valuation φ′ by only flipping the assignment to l,
i.e., φ′ |= l. Clearly, φ′ |= f since l ∈ f . Furthermore, φ′ |=
N \ G since these clauses do not contain ¬l and thus the
change of the assignment to l does not affect them. Finally,
φ′ |= G since every g ∈ G contains a literal k, k 6= ¬l,
with φ |= k (and φ′ agrees with φ on k). Hence, N ∪ {f} is
satisfiable, which contradicts that N is a MSS.

Unfortunately, the proposition reasons about all models of
a MSS (i.e., a universal property), which is expensive to en-
code with a propositional formula. Yet, since every MSS has
at least a single model, we can relatively cheaply encode a
weaker, existential, variant of Proposition 10. We defineW4

asW4 = {N ∈ SSF | ∃φ ∈ Vals(F).φ |= N ∧
∧
f∈F\N P},

where P =
∧
l∈f

∨
g∈{g∈N | ¬l∈g}

∧
k∈g\{¬l} ¬k. We en-

codeW4 and its reminderR4 via W4 and R4 as follows:

W4 = W1 ∧
∧
f∈F

¬af =⇒ P′, where

P′ =
∧
l∈f

∨
g∈{g∈F | ¬l∈g}

(ag ∧
∧

k∈g\{¬l}

¬k)
(7)

R4 = W4 ∧ R1 (8)

Proposition 11. For every valuation π ofA, π ∈MW4↓A iff
AF (π) ∈ W4. Consequently, |MW4↓A| = |W4|.

Proof. ⇒: Let π′ be a model of W4 such that π = π′
↓A.

We show that π′ and AF (π) comply with the conditions on
φ and N , respectively, from the definition of W4. W4 sub-
sumes W1, thus π′ |= AF (π) (Proposition 2). Furthermore,
since π′ |= W4 and π = π′

↓A, it holds that π′ |= W4[π].
Finally, as f ∈ AF (π) iff π |= af , observe that W4[π] ≡∧
f∈F\AF(π)

∧
l∈f

∨
g∈{g∈AF(π) | ¬l∈g}

∧
k∈g\{¬l} ¬k

(which is the condition on φ).

⇐: Given N ∈ W4 and a valuation φ such that
φ |= N ∧

∧
f∈F\N P (as in the definition ofW4) , we build a

model π′ of W4 same as we did in the proof of Proposition 2,
i.e., π′(x) = φ(x) if x ∈ Vars(F), π′(af) = 0 if f 6∈ N ,
and π′(af) = 1 if f ∈ N . Like in the proof of Proposition 2,
it holds that AF (π′

↓A) = N and π′ |= W1. As for the rest
of W4, it generally holds that π′ |= (

∧
f∈F ¬af =⇒ P′)

iff π′ |= (
∧
f∈F ¬af =⇒ P′)[π′

↓A]. Furthermore,
(
∧
f∈F ¬af =⇒ P′)[π′

↓A] ≡
∧
f∈F\N P, since π′

↓A |= af
iff f ∈ N . Finally, φ |=

∧
f∈F\N P and π′ agrees with φ on

Vars(
∧
f∈F\N P), hence π′ |=

∧
f∈F\N P.

Proposition 12. For every valuation π of A, π ∈MR4↓A iff
AF (π) ∈ R4. Consequently, |MR4↓A| = |R4|.

Proof. MR4↓A = M(W4∧R1)↓A = MW4↓A ∩ MR1↓A =
{π |AF (π) ∈ W4} ∩ {π |AF (π) ∈ R1} = {π |AF (π) ∈
W4 ∩R1} = {π |AF (π) ∈ R4}. The other direction holds
since AF is a one-to-one mapping (bijection).

Combining The Wrappers
Proposition 13. For every two wrappers Wi,Wj ∈
{W1, . . . ,W4} and their remaindersRi,Rj , it holds:

1. Wi ∩Wj is a wrapper, andRi ∩Rj is its remainder.
2. For every valuation π of A, π ∈ M(Wi∧Wj)↓A iff

AF (π) ∈ Wi ∩ Wj . Consequently, |M(Wi∧Wj)↓A| =
|Wi ∩Wj |.

3. For every valuation π ofA, π ∈M(Ri∧Rj)↓A iff AF (π) ∈
Ri ∩Rj . Consequently, |M(Ri∧Rj)↓A| = |Ri ∩Rj |.

Proof.

1. By Definition 3, a set W is a wrapper iff MSSF ⊆ W ⊆
SSF , and the remainder ofW isR =W ∩ nonMSSF .Wi

andWj are wrappers, thus MSSF ⊆ Wi,Wj ⊆ SSF , and
hence MSSF ⊆ Wi ∩ Wj ⊆ SSF . Furthermore, Ri =
Wi ∩ nonMSSF and Rj = Wj ∩ nonMSSF , hence Ri ∩
Rj =Wi ∩Wj ∩ nonMSSF .

2. By Propositions 2, 4, 8 and 11, M(Wi∧Wj)↓A = MWi↓A∩
MWj↓A = {π |AF (π) ∈ Wi} ∩ {π |AF (π) ∈ Wj} =
{π |AF (π) ∈ Wi ∩Wj}. The other direction holds since
AF is a one-to-one mapping (bijection).

3. By Propositions 3, 5, 9 and 12, M(Ri∧Rj)↓A = MRi↓A ∩
MRj↓A = {π |AF (π) ∈ Ri} ∩ {π |AF (π) ∈ Rj} =
{π |AF (π) ∈ Ri ∩ Rj}. The other direction holds since
AF is a one-to-one mapping (bijection).

Note that all the formulas W2, W3 and W4 use as a sub-
formula W1. Similarly, all the formulas R2, R3 and R4 use
as a subformula R1. Thus, if we combine two wrappers, we
duplicate some clauses in the formulas. In our implementa-
tion, we first remove all duplicated clauses from a formula
before we pass it to a model counting tool. This simplifica-
tion is sound as it does not reduce the number of models of
the formula.

3656

On Choice of Projected Model Counting
We remark on the choice of reduction of MSS counting to
projected model counting. One might wonder whether we
could have reduced to the classical problem of model count-
ing. In this context, note that the classical model counting
is #P-complete and checking whether an assignment satis-
fies a CNF formula is in P. In contrast, checking whether
a given set of clauses is an MSS is in DP, and therefore, it
is expected to rely on a problem that is perhaps harder than
classical model counting from the complexity perspective.
Therefore, projected model counting, which is in #NP-hard,
is a good choice given its hardness and the recent develop-
ment of efficient techniques.

Experimental Evaluation
We have implemented our approach for solving the #MSS
problem in a python-based tool. To count the number of pro-
jected models of the wrappers, we use the model counter
GANAK (Sharma et al. 2019). Furthermore, we employ the
MaxSAT solver UWrMaxSat (Piotrów 2019) as a backend
while computing the under-approximation I of the intersec-
tion of MSSes in the case of the wrapper W2. Our tool is
publicly available at:

https://github.com/jar-ben/MSSCounting

In this section, we experimentally compare the four wrap-
pers, W1, . . . ,W4, and their combinations for the task of
determining the MSS count of a given formula. Note that
the wrapper W1 is by the definition subsumed by the re-
maining three wrappers. Therefore, there are only 8 possi-
ble combined wrappers (according to Proposition 13) that
make sense: W1 = W1, W2 = W2, W3 = W3, W4 = W4,
W23 = W2 ∩ W3, W24 = W2 ∩ W4, W34 = W3 ∩ W4,
W234 =W2∩W3∩W4. At first glance, the wrapper W234
that combines all the base wrappers should be the most suit-
able one since it provides the most accurate description of
MSSes. However, the Boolean formula that describes this
wrapper is also the largest one in the number of clauses, and
thus it might be hard to deal with for the model counter.
Therefore, it makes sense to evaluate all the 8 combina-
tions. Moreover, we compare our wrapper-based approach
for counting MSSes with the contemporary MSS counting
approach: complete MSS enumeration via an MSS enumer-
ation tool. In particular, we evaluate two contemporary MSS
enumeration tools: FLINT (Narodytska et al. 2018)1, and
RIME (Bendı́k and Černá 2020)2. Thus, in total, we com-
pare ten tools (RIME, FLINT, and our approach using one
of the eight wrappers).

We use three comparison criteria: 1) the number of bench-
marks for which the tools provide the MSS count, 2) the time
to provide the MSS count, and 3) the scalability of the tools
w.r.t. the MSS count.

We used a collection of 1200 Boolean CNF formulas that
were recently used in prior MUS literature (Liu and Luo

1The implementation of FLINT was kindly provided to us by
its author, Nina Narodytska.

2https://github.com/jar-ben/rime

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 200 300 400 500 600

el
ap

se
d

tim
e

in
 s

ec
on

ds

solved benchmarks

FLINT
RIME
W234
W23
W2

W24
W4

W34
VBS

Figure 2: The number of finished benchmarks in time.

 1

 100

 10000

 1x106

 1x108

 1x1010

 1x1012

 0 100 200 300 400 500 600

M
SS

 C
ou

nt

individual benchmarks

W234
RIME

Figure 3: Scalability w.r.t. the MSS count.

2018; Luo and Liu 2019)3. The benchmarks contain from
100 to 1000 clauses, use from 50 to 996 variables, and have
from 2 to at least 4.74×1012 MSSes (the highest MSS count
revealed in our evaluation).

All experiments were run using a time limit of 3600 sec-
onds (1 hour) and computed on an AMD EPYC 7371 16-
Core Processor, 1 TB memory machine running Debian
Linux 4.19.67-2.

Number of Completed Benchmarks
We now examine the number of benchmarks for which the
evaluated tools determined the MSS count; we simply say
that the tools solved the benchmarks. Only 515 of the 1200
benchmarks were solved by at least one of the tools. Further-
more, 353 benchmarks were solved either by FLINT or by
RIME, and 510 benchmarks were solved using one of our
wrapper-based tools.

The cactus plot in Figure 2 shows for each tool the num-
ber of solved benchmarks and the time to solve the bench-
marks. In particular, a point with coordinates [x, y] means
that there are x benchmarks for which the corresponding
tool provided the MSS count within the first y seconds of
the computation. There are only 327 and 347 benchmarks
where FLINT and RIME provided the MSS count, respec-
tively. As for our approach, the best result was achieved by

3https://github.com/luojie-sklsde/MUS Random Benchmarks

3657

FLINT RIME W234 W24 W23
FLINT — 6;26 2;181 2;181 2;146
RIME 26;6 — 5;164 5;164 5;129
W234 181;2 164;5 — 4;4 35;0
W24 181;2 164;5 4;4 — 38;3
W23 146;2 129;5 0;35 3;38 —

Table 1: Number of benchmarks where a tool solved
“more;fewer” benchmarks than the other tools.

the wrappers W234 and W24 which both solved 506 bench-
marks, i.e., there is an incredible improvement of 46 per-
cent over the best MSS enumerator RIME. W23 solved 471
benchmarks, which is also a solid result. On the other hand,
W2, W4, and W34 solved only 209, 195, and 197 bench-
marks, respectively. W1 and W3 did not solve even a single
benchmark. We also show in the plot the result obtained by
the virtual best system (VBS), i.e., for each benchmark we
consider the fastest of the evaluated tools. Note that W234
and W24 performed almost as good as the VBS.

There are 4 benchmarks that were solved by W234, but
not by W24, and vice versa. Table 1 pair-wise compares
FLINT, RIME, and the three best wrappers, W234, W24,
and W23, w.r.t. this criterion. Each cell contains two num-
bers, k; l, expressing that there are k benchmarks that were
solved by the tool labeling the row but not by the tool label-
ing the column, and vice versa for l. There are only 2 and 5
benchmarks that were solved by FLINT and RIME, respec-
tively, and that were not solved by any of our wrappers.

Scalability W.R.T. the MSS Count
An MSS enumerator (e.g., FLINT or RIME) has to explic-
itly enumerate all MSSes to obtain the MSS count. Conse-
quently, if the MSS count is large, the complete enumeration
naturally becomes practically intractable (w.r.t. a reasonable
time limit). On the other hand, our approach reduces the
MSS counting to model counting, and it is often the case that
a model counter needs to explicitly identify only a fraction
of the models. Consequently, our approach should hypothet-
ically scale much better w.r.t. the MSS count.

To prove our hypothesis, we compare the best MSS enu-
meration tool, RIME, with our best wrapper, W234. The plot
in Figure 3 shows on the x-axis the benchmarks that were
completed by at least one of the two tools and on the y-
axis the MSS count of the benchmarks. The benchmarks are
sorted by the MSS count. In the case of RIME, the points in
the plot show the number of enumerated MSSes within the
given time limit, i.e., it is either the exact MSS count or its
under-approximation. RIME was able to solve only bench-
marks with at most 106 MSSes. On the other hand, W234
solved even benchmarks that contain 1012 MSSes, i.e., it
scales much better. Note that we show in the plot also the
5 benchmarks that were solved by RIME but not by W234;
these are illustrated as the 5 points on the x-axis.

Conclusion
Motivated by the progress in model counting, we initiate the
study of counting the number of MSSes of a given formula.

Our novel algorithmic framework relies on the notions of
wrappers and their corresponding remainders. We show that
wrappers and remainders compose, and the computation of
the sizes of wrappers and remainders reduces to the pro-
jected model counting. The availability of an efficient pro-
jected model counter, GANAK, allowed our MSS counting
approach to scale, in terms of the MSS count, significantly
better than alternative approaches based on the MSS enu-
meration.

As for the future work, we would like to address also a
better scaling of our approach w.r.t. the number of clauses
in the input instance. Whereas we are currently able to han-
dle instances with hundreds of clauses, instances with high
thousands or even millions of clauses are still out of our
reach. In this context, a promising challenge would be to
handle the widely used dataset of 300 CNF formulas from
the MUS track of the SAT Competition 2011. A vast ma-
jority of benchmarks from this set is not tractable for con-
temporary MSS enumeration tools due to a large number of
MSSes, and it is also not tractable for our approach owing to
a large number of clauses in the benchmarks, which in turn
leads to an increase in the number of variables for projected
model counting queries. An interesting direction to address
this scalability challenge is to investigate whether a com-
ponent caching-based scheme operating natively over the
space of MSSes, i.e., avoiding the reduction to model count-
ing, can lead to a better runtime efficiency. Another line
of future work is to evaluate other contemporary projected
model counting tools such as nestHDB (Hecher, Thier, and
Woltran 2020) or projMC (Lagniez and Marquis 2019), and
to employ preprocessing techniques such as (Manthey 2012)
or (Lagniez, Lonca, and Marquis 2020). Finally, we plan
to examine an extension of our MSS counting approach to
other constraint domains where MSSes find an application,
e.g., F can be a set of LTL (Barnat et al. 2016; Bendı́k 2017)
or SMT (Guthmann, Strichman, and Trostanetski 2016) for-
mulas.

Acknowledgements
This work was supported in part by the National Re-
search Foundation Singapore under its NRF Fellowship Pro-
gramme [NRF-NRFFAI1-2019-0004] and the AI Singapore
Programme [AISG-RP-2018-005], NUS ODPRT Grant [R-
252-000-685-13].

References
Aziz, R. A.; Chu, G.; Muise, C.; and Stuckey, P. 2015. ex-
ists SAT: Projected Model Counting. In International Con-
ference on Theory and Applications of Satisfiability Testing,
121–137. Springer.

Bacchus, F.; and Katsirelos, G. 2015. Using Minimal Cor-
rection Sets to More Efficiently Compute Minimal Unsat-
isfiable Sets. In CAV (2), volume 9207 of LNCS, 70–86.
Springer.

Bacchus, F.; and Katsirelos, G. 2016. Finding a Collection of
MUSes Incrementally. In CPAIOR, volume 9676 of LNCS,
35–44. Springer.

3658

Bailey, J.; and Stuckey, P. J. 2005. Discovery of minimal
unsatisfiable subsets of constraints using hitting set dualiza-
tion. In PADL, 174–186. Springer.

Baluta, T.; Shen, S.; Shinde, S.; Meel, K. S.; and Saxena,
P. 2019. Quantitative verification of neural networks and
its security applications. In Proceedings of the 2019 ACM
SIGSAC Conference on Computer and Communications Se-
curity, 1249–1264.

Barnat, J.; Bauch, P.; Beneš, N.; Brim, L.; Beran, J.; and
Kratochvı́la, T. 2016. Analysing sanity of requirements for
avionics systems. FAoC 1–19.

Bayardo Jr, R. J.; and Pehoushek, J. D. 2000. Counting mod-
els using connected components. In AAAI/IAAI, 157–162.

Belov, A.; Lynce, I.; and Marques-Silva, J. 2012. Towards
efficient MUS extraction. AI Commun. 25(2): 97–116.

Bendı́k, J. 2017. Consistency checking in requirements anal-
ysis. In ISSTA, 408–411. ACM.

Bendı́k, J.; Beneš, N.; Černá, I.; and Barnat, J. 2016. Tunable
Online MUS/MSS Enumeration. In FSTTCS, volume 65
of LIPIcs, 50:1–50:13. Schloss Dagstuhl - Leibniz-Zentrum
fuer Informatik.

Bendı́k, J.; and Černá, I. 2020a. MUST: Minimal Unsat-
isfiable Subsets Enumeration Tool. In TACAS (1), volume
12078 of LNCS, 135–152. Springer.

Bendı́k, J.; and Černá, I. 2020b. Replication-Guided Enu-
meration of Minimal Unsatisfiable Subsets. In CP, volume
12333 of LNCS, 37–54. Springer.

Bendı́k, J.; and Černá, I. 2020. Rotation Based MSS/MCS
Enumeration. In LPAR, volume 73 of EPiC Series in Com-
puting, 120–137. EasyChair.

Bendı́k, J.; Černá, I.; and Beneš, N. 2018. Recursive On-
line Enumeration of All Minimal Unsatisfiable Subsets. In
ATVA, volume 11138 of LNCS, 143–159. Springer.

Bendı́k, J.; and Meel, K. S. 2020. Approximate Counting of
Minimal Unsatisfiable Subsets. In CAV (1), volume 12224
of LNCS, 439–462. Springer.

Besnard, P.; Grégoire, É.; and Lagniez, J.-M. J. 2015. On
computing maximal subsets of clauses that must be satisfi-
able with possibly mutually-contradictory assumptive con-
texts. In Twenty-Ninth AAAI Conference on Artificial Intel-
ligence.

Biondi, F.; Enescu, M. A.; Heuser, A.; Legay, A.; Meel,
K. S.; and Quilbeuf, J. 2018. Scalable approximation of
quantitative information flow in programs. In International
Conference on Verification, Model Checking, and Abstract
Interpretation, 71–93. Springer.

Birnbaum, E.; and Lozinskii, E. L. 1999. The good old
Davis-Putnam procedure helps counting models. Journal
of Artificial Intelligence Research 10: 457–477.

Chakraborty, S.; Fremont, D. J.; Meel, K. S.; Seshia, S. A.;
and Vardi, M. Y. 2014. Distribution-Aware Sampling and
Weighted Model Counting for SAT. In Proc. of AAAI, 1722–
1730.

Chakraborty, S.; Meel, K. S.; and Vardi, M. Y. 2016. Algo-
rithmic Improvements in Approximate Counting for Proba-
bilistic Inference: From Linear to Logarithmic SAT Calls. In
Proc. of IJCAI.
Darwiche, A. 2004. New Advances in Compiling CNF into
Decomposable Negation Normal Form. In ECAI, 328–332.
IOS Press.
Darwiche, A. 2011. SDD: A New Canonical Representa-
tion of Propositional Knowledge Bases. In IJCAI, 819–826.
IJCAI/AAAI.
de Kleer, J.; and Williams, B. C. 1987. Diagnosing Multiple
Faults. Artif. Intell. 32(1): 97–130.
Durand, A.; Hermann, M.; and Kolaitis, P. G. 2005. Subtrac-
tive reductions and complete problems for counting com-
plexity classes. Theoretical Computer Science 340(3): 496–
513.
Guthmann, O.; Strichman, O.; and Trostanetski, A. 2016.
Minimal unsatisfiable core extraction for SMT. In FMCAD,
57–64. IEEE.
Hecher, M.; Thier, P.; and Woltran, S. 2020. Taming High
Treewidth with Abstraction, Nested Dynamic Programming,
and Database Technology. In SAT, volume 12178 of LNCS,
343–360. Springer.
Hunter, A.; and Konieczny, S. 2008. Measuring Inconsis-
tency through Minimal Inconsistent Sets. In KR, 358–366.
AAAI Press.
Kleine Büning, H.; and Kullmann, O. 2009. Minimal Un-
satisfiability and Autarkies. In Handbook of Satisfiability,
volume 185 of FAIA, 339–401. IOS Press.
Kullmann, O. 2000a. An Application of Matroid Theory
to the SAT Problem. In Computational Complexity Confer-
ence, 116. IEEE Computer Society.
Kullmann, O. 2000b. Investigations on autark assignments.
Discrete Applied Mathematics 107(1-3): 99–137.
Lagniez, J.; Lonca, E.; and Marquis, P. 2020. Definability
for model counting. Artif. Intell. 281: 103229.
Lagniez, J.; and Marquis, P. 2017. An Improved Decision-
DNNF Compiler. In IJCAI, 667–673. ijcai.org.
Lagniez, J.-M.; and Marquis, P. 2019. A recursive algo-
rithm for projected model counting. In Proceedings of
the AAAI Conference on Artificial Intelligence, volume 33,
1536–1543.
Liffiton, M. H.; Previti, A.; Malik, A.; and Marques-Silva, J.
2016. Fast, flexible MUS enumeration. Constraints 21(2):
223–250.
Liffiton, M. H.; and Sakallah, K. A. 2008. Algorithms for
computing minimal unsatisfiable subsets of constraints. JAR
40(1): 1–33.
Liu, S.; and Luo, J. 2018. FMUS2: An Efficient Algorithm
to Compute Minimal Unsatisfiable Subsets. In AISC, vol-
ume 11110 of LNCS, 104–118. Springer.
Luo, J.; and Liu, S. 2019. Accelerating MUS enumeration
by inconsistency graph partitioning. Science China Infor-
mation Sciences 62(11): 212104.

3659

Manthey, N. 2012. Coprocessor 2.0 - A Flexible CNF Sim-
plifier - (Tool Presentation). In SAT, volume 7317 of LNCS,
436–441. Springer.
Marques-Silva, J.; Heras, F.; Janota, M.; Previti, A.; and
Belov, A. 2013. On Computing Minimal Correction Sub-
sets. In IJCAI, 615–622. IJCAI/AAAI.
Marques-Silva, J.; Ignatiev, A.; Morgado, A.; Manquinho,
V. M.; and Lynce, I. 2014. Efficient Autarkies. In ECAI,
volume 263 of FAIA, 603–608. IOS Press.
Mencı́a, C.; Kullmann, O.; Ignatiev, A.; and Marques-Silva,
J. 2019. On Computing the Union of MUSes. In SAT, vol-
ume 11628 of LNCS, 211–221. Springer.
Meseguer, P.; Bouhmala, N.; Bouzoubaa, T.; Irgens, M.; and
Sánchez-Fibla, M. 2003. Current Approaches for Solving
Over-Constrained Problems. Constraints An Int. J. 8(1): 9–
39.
Möhle, S.; and Biere, A. 2018. Dualizing projected model
counting. In 2018 IEEE 30th International Conference on
Tools with Artificial Intelligence (ICTAI), 702–709. IEEE.
Monien, B.; and Speckenmeyer, E. 1985. Solving satisfia-
bility in less than 2n steps. Discrete Applied Mathematics
10(3): 287–295.
Muise, C.; McIlraith, S. A.; Beck, J. C.; and Hsu, E. I.
2012. D sharp: fast d-DNNF compilation with sharpSAT.
In Canadian Conference on Artificial Intelligence, 356–361.
Springer.
Narodytska, N.; Bjørner, N.; Marinescu, M.; and Sagiv, M.
2018. Core-Guided Minimal Correction Set and Core Enu-
meration. In IJCAI, 1353–1361. ijcai.org.
Piotrów, M. 2019. UWrMaxSat-a new MiniSat+-based
Solver in MaxSAT Evaluation 2019. MaxSAT Evaluation
2019 11.
Previti, A.; Mencı́a, C.; Järvisalo, M.; and Marques-Silva, J.
2018. Premise Set Caching for Enumerating Minimal Cor-
rection Subsets. In AAAI, 6633–6640. AAAI Press.
Reiter, R. 1987. A Theory of Diagnosis from First Princi-
ples. Artif. Intell. 32(1): 57–95.
Sang, T.; Bacchus, F.; Beame, P.; Kautz, H. A.; and Pitassi,
T. 2004. Combining Component Caching and Clause Learn-
ing for Effective Model Counting. SAT 4: 7th.
Sang, T.; Beame, P.; and Kautz, H. A. 2005. Performing
Bayesian inference by weighted model counting. In AAAI,
volume 5, 475–481.
Sashittal, P.; and El-Kebir, M. 2020. Sampling and summa-
rizing transmission trees with multi-strain infections. Bioin-
formatics 36(Supplement 1): i362–i370.
Sharma, S.; Roy, S.; Soos, M.; and Meel, K. S. 2019.
GANAK: A Scalable Probabilistic Exact Model Counter. In
IJCAI, 1169–1176. ijcai.org.
Sperner, E. 1928. Ein satz über untermengen einer endlichen
menge. Mathematische Zeitschrift 27(1): 544–548.
Stern, R. T.; Kalech, M.; Feldman, A.; and Provan, G. M.
2012. Exploring the Duality in Conflict-Directed Model-
Based Diagnosis. In AAAI. AAAI Press.

Thimm, M. 2018. On the evaluation of inconsistency mea-
sures. Measuring Inconsistency in Information 73.
Thurley, M. 2006. sharpSAT–counting models with ad-
vanced component caching and implicit BCP. In Interna-
tional Conference on Theory and Applications of Satisfia-
bility Testing, 424–429. Springer.
Valiant, L. G. 1979. The Complexity of Enumeration and
Reliability Problems. SIAM J. Comput. 8(3): 410–421.

3660

