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Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbendik,cerna,xbenes3}@fi.muni.cz

Abstract. In various areas of computer science, we deal with a set of
constraints to be satisfied. If the constraints cannot be satisfied simultane-
ously, it is desirable to identify the core problems among them. Such cores
are called minimal unsatisfiable subsets (MUSes). The more MUSes are
identified, the more information about the conflicts among the constraints
is obtained. However, a full enumeration of all MUSes is in general in-
tractable due to the large number (even exponential) of possible conflicts.
Moreover, to identify MUSes, algorithms have to test sets of constraints
for their simultaneous satisfiability. The type of the test depends on the
application domains. The complexity of the tests can be extremely high
especially for domains like temporal logics, model checking, or SMT.
In this paper, we propose a recursive algorithm that identifies MUSes
in an online manner (i.e., one by one) and can be terminated at any
time. The key feature of our algorithm is that it minimises the number
of satisfiability tests and thus speeds up the computation. The algorithm
is applicable to an arbitrary constraint domain and proves to be efficient
especially in domains with expensive satisfiability checks. We benchmark
our algorithm against the state-of-the-art algorithm Marco on the Boolean
and SMT constraint domains and demonstrate that our algorithm really
requires less satisfiability tests and consequently finds more MUSes in
the given time limits.

1 Introduction

In many different applications we are given a set of constraints (requirements)
with the goal to decide whether the set of constraints is satisfiable, i.e., whether
all the constraints can hold simultaneously. In case the given set is shown to
be unsatisfiable, we might be interested in an analysis of the unsatisfiability.
Identification of minimal unsatisfiable subsets (MUSes) is a kind of such analysis.
A minimal unsatisfiable subset is a set of constraints that are not simultaneously
satisfiable, yet the elimination of any of them makes the set satisfiable. We
illustrate the problem on two different applications.

In the requirements analysis, the constraints represent requirements on a sys-
tem that is being developed. Checking for satisfiability (also called consistency)
means checking whether all the requirements can be implemented at once. If the
set of requirements is unsatisfiable, the extraction of MUSes helps to identify
and fix the conflicts among the requirements [5, 10].



In some model checking techniques, such as the counterexample-guided ab-
straction refinement (CEGAR) [15], we are dealing with the following question:
is the counterexample that was found in an abstract model feasible also in the
concrete model? To answer this question, a formula cex ∧ conc encoding both
the counterexample cex and the concrete model conc is built and tested for
satisfiability. If the formula is unsatisfiable, then the counterexample is spurious
and the negation of the formula cex ∧ conc is used to refine the abstract model.
Since both cex and conc are often formed as a conjunction of smaller subformulas,
the whole formula can be seen as a set of conjuncts (constraints). Andraus et
al. [1, 15] found out that instead of using the negation of cex ∧ conc for the
refinement, it is better to identify the MUSes of cex ∧ conc and use the negations
of the MUSes to refine the abstract model.

Yet another applications of MUSes arise for example during formal equivalence
checking [16], proof based abstraction refinement [29], Boolean function bi-
decomposition [12], circuit error diagnosis [24], type debugging in Haskell [36], or
proof explanation in symbolic model checking [22].

The individual applications differ in the constraint domain. Perhaps the most
widely used are Boolean and SMT constraints; these types of constraints arise
for example in the CEGAR workflow. In the requirements analysis, the most
common constraints are those expressed in a temporal logic such as Linear
Temporal Logic [33] or Computational Tree Logic [14]. The list of constraint
domains in which MUS enumeration finds an application is quite long and new
applications still arise. Therefore, we focus on MUS enumeration algorithms
applicable in arbitrary constraint domains.

Main contribution All algorithms solving the MUS enumeration problem have
to get over two barriers. First, the number of all MUSes can be exponential w.r.t.
the number of constraints. Therefore, the complete enumeration of all MUSes can
be intractable. To overcome this limitation we present an algorithm for online
MUS enumeration, i.e., an algorithm that enumerates MUSes one by one and
can be terminated at any time.

Second, algorithms for MUS enumeration need to test whether a given set of
constraints is satisfiable. This is typically a very hard task and it is thus desirable
to minimise the overall number of satisfiability queries. To reduce the number of
performed satisfiability queries, the majority of the state-of-the-art algorithms
(for their detailed description see Section 4) try to exploit specific properties of
particular constraint domains. Most of the algorithms were evaluated only in
the SAT domain (the domain of Boolean constraints). The SAT domain enjoys
properties that can be used to significantly reduce the number of satisfiability
queries and the state-of-the-art algorithms are thus very efficient in this domain.
However, this might not be the case in domains for which no such domain
specific properties exist. Here, we present a novel algorithm that exploits both the
domain specific as well as domains agnostics properties of the MUS enumeration
problem. First, the algorithm employs, as a black-box subroutine, a domain
specific single MUS extraction algorithm which allows it to exploit specific
properties of particular domains. Second, it recursively searches for MUSes in



0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Fig. 1: Illustration of the power set of the set C of constraints from the Example 1.
We encode individual subsets of C as bitvectors, e.g. the subset {c1, c3, c4} is
written as 1011. The subsets with dashed border are the unsatisfiable subsets
and the others are satisfiable subsets. The MUSes and MSSes are filled with
a background colour.

smaller and smaller subsets of the given set of constraints which allows it to
directly reduce the number of performed satisfiability queries.

2 Preliminaries and Problem Statement

We are given a finite set of constraints C with the property that each subset
of C is either satisfiable or unsatisfiable. The notion of satisfiability may vary
in different constraint domains. The only assumption is that if a set X, X ⊆ C,
is unsatisfiable, then all supersets of X are unsatisfiable as well. The sets of
interests are defined as follows.

Definition 1 (MUS, MSS, MCS). Let C be a finite set of constraints and let
N ⊆ C. N is a minimal unsatisfiable subset (MUS) of C if N is unsatisfiable
and ∀c ∈ N : N \ {c} is satisfiable. N is a maximal satisfiable subset (MSS) of
C if N is satisfiable and ∀c ∈ C \N : N ∪ {c} is unsatisfiable. N is a minimal
correction set (MCS) of C if C \N is a MSS of C.

The maximality concept used in the definition of a MSS is the set maximality
and not the maximum cardinality as in the MaxSAT problem. Thus a constraint
set C can have multiple MSSes with different cardinalities.

Example 1. Assume that we are given a set C = {c1, c2, c3, c4} of four Boolean
satisfiability constraints c1 = a, c2 = ¬a, c3 = b, and c4 = ¬a ∨ ¬b. Clearly, the
whole set is unsatisfiable as the first two constraints are negations of each other.
There are two MUSes of C, namely {c1, c2}, {c1, c3, c4}. There are three MSSes
of C, namely {c1, c4}, {c1, c3}, and {c2, c3, c4}. Finally, there are three MCSes
of C, namely {c2, c3}, {c2, c4}, and {c1}. This example is illustrated in Fig. 1.

Another concept used in our work are the so-called critical constraints that
are defined as follows:



Definition 2 (critical constraint). Let C be a finite set of constraints and let
N ⊆ C be its unsatisfiable subset. A constraint c ∈ N is a critical constraint for
N if N \ {c} is satisfiable.

Note that N is a MUS of C if and only if each c ∈ N is critical for N . Furthermore,
if c is a critical constraint for C then c has to be contained in every unsatisfiable
subset of C, especially in every MUS of C. Also, note that if S is a MSS of C
and S = C \ S its complement (i.e. a MCS of C), then each c ∈ S is critical for
S ∪ {c}.

Example 2. We illustrate the concept of critical constraints on two sets, N and C,
where C is the same set as in Example 1, and N = C \ {c2}. The constraint c1 is
the only critical constraint for C whereas N has three critical constraints: c1, c3,
and c4.

Problem Formulation Given a set of constraints C, enumerate all minimal
unsatisfiable subsets of C in an online manner while minimising the number
of constraints satisfiability queries. Moreover, we require an approach that is
applicable to an arbitrary constraint domain.

3 Algorithm

We start with some observations about the MUS enumeration problem and
describe the main concepts used in our algorithm.

The algorithm is given an unsatisfiable set of constraints C. To find all MUSes,
the algorithm iteratively determines satisfiability of subsets of C. Initially, only
the satisfiability of C is determined and at the end, satisfiability of all subsets
of C is determined. The algorithm maintains a set Unexplored containing all
subsets of C whose satisfiability is not determined yet. Recall that if a set of
constraints is satisfiable then all its subsets are satisfiable as well. Therefore, if
the algorithm determines some N ⊆ C to be satisfiable, then not only N but also
all of its subsets, denoted by sub(N), become explored (i.e. are removed from the
set Unexplored). Dually, if N is unsatisfiable then all of its supersets, denoted by
sup(N), are unsatisfiable and become explored.

Since there are exponentially many subsets of C, it is intractable to represent
the set Unexplored explicitly. Instead, we use a symbolic representation that is
common in contemporary MUS enumeration algorithms [27, 11, 22]. We encode
C = {c1, c2, . . . , cn} by using a set of Boolean variables X = {x1, x2, . . . , xn}.
Each valuation of X then corresponds to a subset of C. This allows us to represent
the set of unexplored subsets Unexplored using a Boolean formula fUnexplored

such that each model of fUnexplored corresponds to an element of Unexplored .
The formula is maintained as follows:

• Initially fUnexplored = True since all of P(C) are unexplored.

• To remove a satisfiable set N ⊆ C and all its subsets from the set Unexplored
we add to fUnexplored the clause

∨
i:ci 6∈N xi.



• Symmetrically, to remove an unsatisfiable set N ⊆ C and all its supersets
from the set Unexplored we add to fUnexplored the clause

∨
i:ci∈N ¬xi.

To get an element of Unexplored , we ask a SAT solver for a model of fUnexplored .

Example 3. Let us illustrate the symbolic representation on C = {c1, c2, c3}. If
all subsets of C are unexplored then fUnexplored = True. If {c1, c3} is determined
to be unsatisfiable and {c1, c2} to be satisfiable, then fUnexplored is updated to
True ∧ (¬x1 ∨ ¬x3) ∧ (x3).

One of the approaches (see e.g. [26, 11, 34]) how to find a MUS of C is to find
an unexplored unsatisfiable subset, called a seed, and then use any algorithm that
finds a MUS of the seed (this algorithm is often denoted as a shrink procedure).
In our algorithm we use a black-box subroutine for shrinking. This allows us
to always employ the best available, domain specific, single MUS extraction
algorithm.

The key question is how to find an unexplored unsatisfiable subset (a seed).
Due to the monotonicity of the satisfiability of individual subsets (w.r.t. subset
inclusion), satisfiable subsets are typically smaller and, dually, unsatisfiable
subsets are more concentrated among the larger subsets. Therefore, we search for
seeds among maximal unexplored subsets. A set Smax is a maximal unexplored
subset of C iff Smax ⊆ C, Smax ∈ Unexplored , and each of the proper supersets
of Smax is explored. The maximal unexplored subsets correspond to the maximal
models of fUnexplored . Thus, in order to get a maximal unexplored subset Smax,
we ask a SAT solver for such a model. If Smax is unsatisfiable, we use it as a seed
for the shrinking procedure and compute a MUS of C.

The idea of searching for seeds among the maximal unexplored subsets is
already used in some contemporary MUS enumeration algorithms [27, 34, 11, 22].
However, none of the algorithms specify which maximal unexplored subset should
be used for finding a seed. They just ask a SAT solver for an arbitrary maximal
model of fUnexplored (maximal unexplored subset). We found that the choice of
maximal unexplored subset to be used is very important. The complexity of
the shrinking procedure, in general, depends on the cardinality (the number of
constraints) of the seed. Thus, an ideal option would be to search for a seed
among the maximal unexplored subsets with the minimum cardinality, i.e. to
find a minimum maximal model of fUnexplored . However, finding such a model is
very expensive, especially compared to finding an arbitrary maximal model of
fUnexplored . In order to find an arbitrary maximal model, we can just instruct the
SAT solver to use True as a default polarity of variables during solving (this can
be done e.g. in the miniSAT [20] solver). On the other hand, finding a minimum
maximal model of fUnexplored is a hard optimisation problem.

We propose a way of finding seeds that are relatively small, yet cheap to
be found. To find the first seed we are repeatedly asking the SAT solver for an
arbitrary maximal unexplored subset of C until we obtain some unsatisfiable
maximal unexplored subset Smax. Then, we use Smax as the first seed and shrink it
to the first MUS Smus. In order to find the next seed, we use a more sophisticated
approach. Instead of searching for a seed among the maximal unexplored subsets
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Fig. 2: Illustration of our seed selection approach. Figure 2a illustrates the division
of subsets of C into explored satisfiable, explored unsatisfiable, and unexplored
subsets. The blue circle nodes represent the maximal unexplored subsets of C.
Figure 2b shows a previously used seed Smax, a MUS Smus that was found based
on the seed, a set P such that Smus ⊆ P ⊆ Smax, and maximal unexplored
subsets of P (blue circle nodes).

of C, we restrict the search space so that the next seed is smaller than the
previous one. In particular, we choose a set P such that Smus ⊆ P ⊆ Smax and
search for the new seed among the maximal unexplored subsets of P . Note that
the maximal unexplored subsets of P do not have to be maximal unexplored
subsets of C. Furthermore, P is necessarily unsatisfiable and all seeds found
within it are necessarily smaller than the previous seed Smax since P ⊆ Smax. By
choosing the next seed among the maximal unexplored subsets of P , we de facto
solve the problem in a recursive manner. Instead of finding a new MUS of C, we
find a MUS of P , which is necessarily also a MUS of C. Each next seed is found
based on the previous one, i.e. we keep to recursively reducing the search space
as far as we can. Once we end up in a subset P of C such that the whole P(P ) is
explored, we backtrack from the recursion. The approach is illustrated in Fig. 2.

In our algorithm we also use critical constraints. For mining critical constraints
we use the maximal unexplored subsets that are satisfiable. Every satisfiable
maximal unexplored subset Smax of C is a maximal satisfiable subset (MSS)
of C as every superset of Smax is explored. If it were satisfiable then due to
monotonicity Smax should also be explored (which it is not). Thus, for every
c ∈ C \Smax it holds that Smax∪{c} is unsatisfiable and c is a critical constraint
for Smax ∪ {c}.

The critical constraints are used in two different situations. The first situation
arises when we are searching for a seed and the selected maximal unexplored
subset Smax of C is satisfiable. In such a case we can try to pick another maximal



unexplored subset of C and check it for satisfiability. However, for reasons
mentioned above, we try to search for small seeds. Therefore we recursively
search for a maximal unexplored subset of Smax ∪ {c}, where c is a critical
constraint for Smax ∪ {c}. The set Smax ∪ {c} is definitely unsatisfiable and its
cardinality is not greater than the cardinality of C.

Many modern shrinking algorithms [2, 8, 31] use critical constraints to speed
up their computation. Every MUS of C has to contain all the critical constraints
for C and this helps the shrinking procedure to narrow the search space. The
critical constraints for C have to be delivered to the shrinking algorithm together
with the seed. Our algorithm can compute and accumulate critical constraints
effectively while recursively traversing the space. If X and Y are two sets of
constraints such that X ⊇ Y , then every critical constraint for X is also a critical
constraint for Y . The algorithm thus can utilise the known critical constraints
even in its recursive part.

3.1 Description of the Algorithm

The pseudocode of our algorithm is shown in Algorithm 1. The computation
of the algorithm starts with an initialisation phase followed by a call of the
procedure FindMUSes, which is the core procedure of our algorithm.

The procedure FindMUSes has two input parameters: S and criticals. S is
an unsatisfiable set of constraints and the procedure outputs MUSes of S. The
set criticals contains (currently known) critical constraints for S and is used
for the shrinking procedure. In each iteration, the procedure FindMUSes picks
a maximal unexplored subset Smax of S and tests it for satisfiability. If Smax

is satisfiable, then it is guaranteed to be a MSS of S. Thus, the complement
Smcs = S \ Smax of Smax is an MCS of S and it can be used to obtain critical
constraints. If |Smcs| = 1, then the single constraint that forms Smcs is guaranteed
to be a critical constraint for S and it is thus added into criticals . Otherwise, the
procedure recursively calls itself on (Smax ∪{c}, criticals ∪{c}) for each c ∈ Smcs

since each such c is guaranteed to be a critical constraint for Smax ∪ {c}.
In the other case, when Smax is unsatisfiable, then Smax is shrunk to a MUS

Smus (note that the set criticals of critical constraints is provided to the shrinking
procedure). The newly computed Smus is used to reduce the dimension of the
space in which another MUSes are searched for. Namely, the procedure picks
some P , Smus ⊂ P ⊂ Smax, and recursively calls itself on P . After the recursive
call terminates, the procedure continues with the next iteration.

The main idea behind the recursion is to search for MUSes of sets smaller
than S and thus lower the complexity of performed operations. Naturally, there
is a trade-off between the complexity of operations and the expected number
of MUSes occurring in the chosen subspace and thus it might be very tricky
to find an optimal P . In our algorithm we choose P so that |P | = 0.9 · |Smax |,
where |P | and |Smax | are cardinalities of the two sets, respectively. We form P
by adding a corresponding number of constraints from Smax to Smus . Note that
it might happen that |Smus | ≥ 0.9 · |Smax |; in such a case the algorithm skips the
recursion call and continues with the next iteration.



Algorithm 1: ReMUS

1 Function Init(C):
input : an unsatisfiable set of constraints C

2 Unexplored ← P(C)
3 FindMUSes(C, ∅)
1 Function FindMUSes(S, criticals):
2 while Unexplored ∩ P(S) 6= ∅ do
3 Smax ← a maximal unexplored subset of S
4 if Smax is satisfiable then
5 Unexplored ← Unexplored \ Sub(Smax)
6 Smcs ← S \ Smax

7 if |Smcs| = 1 then
8 criticals ← criticals ∪ Smcs

9 else
10 for each c ∈ Smcs do
11 FindMUSes(Smax ∪ {c}, criticals ∪ {c})

12 else
13 Smus ←Shrink(Smax, criticals)
14 output Smus

15 Unexplored ← Unexplored \ (Sup(Smus) ∪ Sub(Smus))
16 if |Smus| < 0.9 · |Smax| then
17 P ← subset such that Smus ⊂ P ⊂ Smax, |P | = 0.9 · |Smax|
18 FindMUSes (P , criticals)

The set Unexplored is updated appropriately during the whole computation.
Note that the set Unexplored is shared among the individual recursive calls; in
particular if the algorithm determines some subset S to be unsatisfiable then all
of its supersets (w.r.t. the original search space) are deduced to be unsatisfiable.
On the other hand, the maximal unexplored subsets (and their complements)
are local and are defined with respect to the current search space.

Correctness The algorithm outputs only the results of shrinking which is
assumed to be a correct MUS extraction procedure. Each MUS is produced only
once since only unexplored subsets are shrunk and each MUS is removed from
the set Unexplored immediately after producing. Only subsets whose status is
known are removed from the set Unexplored thus no MUS is excluded from the
computation. The algorithm terminates and all MUSes are found since the size
of Unexplored is reduced after every iteration.

4 Related Work

The list of existing approaches to the MUS enumeration problem is short, espe-
cially compared to the amount of work dealing with a single MUS extraction [6–9,
30, 32]. Moreover, existing algorithms for the MUS enumeration are tailored



mainly to Boolean constraints [21, 23, 3, 2] and cannot be applied to other con-
straints. The approaches that focus on MUS enumeration in general constraint
systems can be divided into two categories: approaches that compute MUSes
directly and those that rely on the hitting set duality.

Direct MUS enumeration
The early algorithms were based on explicit enumeration of every subset of the
unsatisfiable constraint system. As far as we know, the MUS enumeration was
pioneered by Hou [25] in the field of diagnosis. Hou’s algorithm checks every subset
for satisfiability starting with the whole set of constraints and exploring its power
set in a tree-like structure. Also, some pruning rules that allow skipping irrelevant
branches are presented. This approach was revisited and further improved by Han
and Lee [24] and by de la Banda et al. [17]. Another approach using step-by-step
powerset exploration was recently proposed by Bauch et al. [5]. The authors
of this work focus on constraints expressed using LTL formulas; however, their
algorithm can be used for any type of constraints. Explicit exploration of the
power set is the bottleneck of all of the above mentioned algorithms as the size
of the power set is exponential to the number of constraints in the system.

Liffiton et al. [26] and Silva et al. [34] developed independently two nearly
identical algorithms: MARCO [26] and eMUS [34]. Both algorithms were later
merged and presented [27] under the name of MARCO. Among the existing MUS
enumeration algorithms, MARCO is perhaps the one most similar to ReMUS.
It uses symbolic representation of the power set and is able to produce MUSes
incrementally during its computation in a relatively steady rate. In order to find
individual MUSes, it iteratively picks maximal unexplored subsets of the original
set of constraints and checks them for satisfiability. The unsatisfiable subsets are
shrunk, using a black-box procedure, into MUSes. Contrary to ReMUS, MARCO
does not tend to reduce the size of the sets to be shrunk and thus to directly
reduce the number of performed satisfiability checks. Instead, it assumes that
the black-box shrinking procedure would do the trick. MARCO is very efficient
in constraint domains for which efficient shrink procedures exist. However, in the
other domains, it is less efficient. This is mainly due to the fact that it shrinks
the maximal unexplored subsets of the original set of constraints, i.e. it shrinks
relatively large sets.

In our previous work [11], we have presented the algorithm TOME that also
produces MUSes in an online manner. It iteratively uses binary search to find the
so-called local MUSes/MSSes. Each local MUS/MSS is optionally, based on its
size (cardinality), shrunk/grown to a global MUS/MSS. TOME tries to predict
the complexity of performing the shrinking/growing procedure and only those
shrinks/grows that seem to be easy to perform are actually performed. TOME is
very efficient in constraint domains for which no efficient shrinking and growing
procedure exist. On the other hand, in domains like Boolean constraints, the
effort needed to find local MUSes and MSSes outweighs the effort needed to
perform the shrinks and grows.

Hitting set duality based approaches
There is a well known relationship between MUSes and MCSes based on the



concept of hitting sets. Given a collection Ω of sets, a hitting set H for Ω is a set
such that ∀S ∈ Ω : H ∩ S 6= ∅. A hitting set is called minimal if none of its
proper subsets is a hitting set. If C is a set of constraints and N ⊆ C, then the
minimal hitting set duality [35] claims that N is a MUS of C iff N is a minimal
hitting set of the set of all the MCSes of C.

The hitting set duality is used for example in CAMUS [28] and DAA [4].
CAMUS works in two phases. It first computes all MCSes of a given constraint set
and then finds all MUSes by computing all minimal hitting sets of these MCSes.
A significant shortcoming of CAMUS is that the first phase can be intractable as
the number of MCSes can be exponential in the number of constraints and all
MCSes must be found before the first MUS can be produced.

The algorithm DAA [4] is able to produce some MUSes before the enumeration
of MCSes is completed. DAA starts each iteration with computing a minimal
hitting set H of currently known MCSes and tests H for satisfiability. If H is
unsatisfiable, it is guaranteed to be a MUS. In the other case, H is grown into
a MSS whose complement is a MCS, i.e. the set of known MCSes is enlarged.
As in the case of MARCO, DAA can use any existing algorithm for a single
MSS/MCS extraction to perform the grow.

MARCO, CAMUS and DAA were experimentally compared in the Boolean
constraints domain [27] and CAMUS has shown to be the fastest in enumerating
all MUSes in the tractable cases. However, in the intractable cases, MARCO
was able to produce at least some MUSes, while CAMUS often got stuck in the
phase of MCSes enumeration. DAA was much slower than CAMUS in the case
of complete MUSes enumeration and also slower than MARCO in the case of
partial MUS enumeration. The main drawbacks of DAA are the complexity of
computing minimal hitting sets and no guarantee on the rate of MUS production.

Bacchus and Katsirelos proposed a MUS enumeration algorithm called MCS-
MUS-BT [3] which is also based on recursion and uses MCSes to extract critical
constraints. However, the algorithm is tailored for the SAT domain and, thus,
cannot be applied in an arbitrary constraint domain. Moreover, the computation
of MCSes is an integral part of MCS-MUS-BT, and the MCSes are computed
in a different way taking up to linearly many satisfiability checks to compute
each MCS. MCS-MUS-BT does not use black-box shrinking procedures and the
recursion is not driven by previously found MUSes.

5 Implementation

We implemented ReMUS into a publicly available tool1. The tool currently
supports three different constraint domains: SAT (Boolean constraints), SMT,
and LTL. It employs several external tools. In particular, it uses the SAT solver
miniSAT [20] for maintaining fUnexplored , and miniSAT is also used as a satisfia-
bility solver in the SAT domain. The tools Z3 [18] and SPOT [19] are used as
satisfiability solvers in the SMT and LTL domains, respectively. Moreover, our

1 https://www.fi.muni.cz/ xbendik/remus/



tool uses the single MUS extractor MUSer2 [8] as a black-box shrink subroutine
in the SAT domain. In the other domains, we use our custom implementation of
the shrinking procedures.

6 Experimental Evaluation

Here, we report results of our experimental evaluation. Besides evaluating ReMUS,
we also provide a comparison with the latest tool implementation2 of the state-
of-the-art MUS enumeration algorithm MARCO [27]. The comparison is done
in the SAT and SMT domains since these are the domains supported by the
MARCO tool. Note that MARCO uses the same external procedures as ReMUS,
i.e. a satisfiability solver, a shrinking procedure, and a SAT solver for maintaining
unexplored subsets. All these external procedures are implemented in the MARCO
tool in the same way as in the ReMUS tool, i.e. using miniSAT [20], Z3 [18], and
MUSer2 [8].

There are three main criteria for the comparison: 1) the number of output
MUSes within a given time limit, 2) the number of satisfiability checks required to
output individual MUSes, and 3) the time required to output individual MUSes.

6.1 Benchmarks and Experimental Setup

The experiments in the SAT domain were conducted on a collection of 292
Boolean CNF benchmarks that were taken from the MUS track of the SAT 2011
competition3. The benchmarks range in their size from 70 to 16 million constraints
and use from 26 to 4.4 million variables. This collection of benchmarks has been
already used in several papers that focus on the problem of MUS enumeration,
see e.g. [11, 26–28]. In the SMT domain, we used a set of 433 benchmarks that
were used in the work by Griggio et al. [13]. The benchmarks were selected
from the library SMT-LIB4, and include instances from the QF UF, QF IDL,
QF RDL, QF LIA and QF LRA divisions. The size of the benchmarks ranges
from 5 to 145422 constraints.

The experiments were run on an Intel(R) Xeon (R) CPU E5-2630 v2, 2.60GHz,
125 GB memory machine running Arch Linux 4.9.40-l-lts. All experiments
were run using a time limit of 3600 seconds. Complete results are available
at https://www.fi.muni.cz/~xbendik/remus/.

7 Experimental Results

7.1 Number of Output MUSes

In this section, we examine the performance of evaluated algorithms in terms of
number of produced MUSes within the given time limit of 3600 seconds. Due to

2 https://sun.iwu.edu/~mliffito/marco/
3 http://www.cril.univ-artois.fr/SAT11/
4 http://www.smt-lib.org/
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Fig. 3: Scatter plots comparing the number of produced MUSes. Blue points
represent the benchmarks where both algorithms finished the computation.

the potentially exponentially many MUSes in each instance, the complete MUS
enumeration is generally intractable. Moreover, even producing a single MUS can
be intractable for larger instances as it naturally includes solving the satisfiability
problem, which is hard to solve in the SAT and SMT domains. Within the given
time limit, both algorithms found more than two MUSes in only 216 SAT and
238 SMT instances. Furthermore, both algorithms finished the computation in
only 24 SAT and 245 SMT instances.

Figure 3 provides scatter plots that compare both evaluated algorithms on
individual benchmarks in the SAT and SMT domains. Each point in the plot
represents the result achieved by the two compared algorithms on one particular
instance; one algorithm determines the position on the vertical axis and the other
one the position on the horizontal axis. MARCO found strictly more MUSes than
ReMUS in 76 SAT and 15 SMT instances. On the other hand, ReMUS found
strictly more MUSes than MARCO in 162 SAT and 118 SMT instances. Note
that in the SMT domain, ReMUS was often better than MARCO by two orders
of magnitude.

7.2 Performed Checks per MUS

In this section, we focus on the main optimisation criterion of our algorithm:
the number of checks required to output individual MUSes. This number differs
for different benchmarks since individual benchmarks vary in many aspects
such as the size of the benchmarks and the size of the MUSes contained in the
benchmarks. Therefore, we focus on average values. Plots in Fig. 4 show the
average number of performed satisfiability checks required to output the first
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Fig. 4: Plots showing the average number of performed satisfiability checks
required to output individual MUSes.

750 MUSes. A point with coordinates (x, y) states that the algorithm needed to
perform y satisfiability checks on average in order to output the first x MUSes.
We used only a subset of the benchmarks to compute the average values since only
for some benchmarks both algorithms found at least 750 MUSes. In particular,
70 and 51 benchmarks were used to compute the average values in the SAT and
SMT domains, respectively.

ReMUS is clearly superior to MARCO in the number of satisfiability checks
required to output individual MUSes. This happens both due to the fact that
ReMUS gradually, in a recursive way, reduces the dimension of the search space
(and thus shrink smaller seeds), as well as due the fact that ReMUS mines and
accumulates critical constraints to speed up the shrinking procedures.

7.3 Elapsed Time per MUS

The fact that ReMUS requires less satisfiability checks than MARCO to output
individual MUSes does not necessarily mean that it is also faster than MARCO
in producing individual MUSes. The time spent by ReMUS to maintain the
recursive calls while trying to save some satisfiability checks might not be worth
it if the checks are easy to perform. We need to answer a domain specific question:
is the price of performing satisfiability checks high enough?

To answer this question for the SAT and SMT domains, we took the 70 SAT
and 51 SMT benchmarks in which both algorithms produced at least 750 MUSes
and computed the average amount of time required to output individual MUSes.
The results are shown in Fig. 5. A point with coordinates (x, y) states that in
order to output the first x MUSes the algorithm required y seconds on average.
In the SMT domain, ReMUS is significantly faster from the very beginning of
the computation. In the SAT domain, MARCO is faster during the first three
minutes, yet afterwards ReMUS becomes much faster.
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Fig. 5: Plots showing the average amount of time required to output individ-
ual MUSes.

7.4 Evaluation

Experimental results demonstrate that ReMUS outperformed MARCO on almost
all the SMT instances and on a majority of the SAT instances. However, on some
SAT instances, ReMUS was quite struggling, especially at the beginning of the
computation. Here, we point out three characteristics of benchmarks/domains
that affect the performance of ReMUS.

First, ReMUS tends to minimise the number of performed satisfiability checks.
Therefore, the higher the complexity of the satisfiability checks, the more is
the tendency to minimise the number of performed checks worth it. Second,
the motivation behind finding small seeds for shrinking procedure is based on
the fact that, in general, the larger the seed is, the more satisfiability checks
are required. However, some constraint domains might enjoy domain specific
properties that allow to shrink the seed very efficiently, regardless of the size
of the seed. In particular, the CNF form of Boolean (SAT) formulas allows to
significantly reduce the number of performed satisfiability checks [8, 32, 6]. Finally,
the reduction of the search space is driven by the previously found MUSes. In
order to perform deep recursion calls, the input instance has to contain many
MUSes. Moreover, there have to be some similar MUSes, i.e. there has to be
a subset that is relatively small and yet contains several MUSes.

In the SMT domain, the shrinking procedures are currently not so advanced
as in the SAT domain, and the complexity of the satisfiability checks in the SMT
domain is often larger than in the SAT domain. Thus, even a small reduction
of the size of the seeds leads to a notable improvement in the overall efficiency.
On the other hand, in the SAT domain, either a significant reduction of the size
of the seeds (i.e. deep recursion calls) or a large number of cumulated critical
constraints is required to speed up the shrinking.

8 Conclusion

We have presented the algorithm ReMUS for online enumeration of MUSes
that is applicable to an arbitrary constraint domain. We observed that the



time required to output individual MUSes generally correlates with the number
of satisfiability checks performed to output the MUSes. The novelty of our
algorithm lies in exploiting both the domain specific as well as domain agnostic
properties of the MUS enumeration problem to reduce the number of performed
satisfiability checks, and thus also reduce the time required to output individual
MUSes. The main idea of the algorithm is to recursively search for MUSes in
smaller and smaller subsets of a given set of constraints. Moreover, the algorithm
cumulates critical constraints and uses them to speed up single MUS extraction
subroutines. We have experimentally compared ReMUS with the state-of-the-art
MUS enumeration algorithm MARCO in the SAT and SMT domains. The results
show that the tendency to minimise the number of performed satisfiability checks
leads to a significant improvement over the state-of-the-art.

References

1. Zaher S Andraus, Mark H Liffiton, and Karem A Sakallah. Cegar-based formal
hardware verification: A case study. Ann Arbor, 2007.

2. Fahiem Bacchus and George Katsirelos. Using minimal correction sets to more
efficiently compute minimal unsatisfiable sets. In CAV (2), 2015.

3. Fahiem Bacchus and George Katsirelos. Finding a collection of MUSes incrementally.
In CPAIOR, 2016.

4. James Bailey and Peter J Stuckey. Discovery of minimal unsatisfiable subsets
of constraints using hitting set dualization. In Practical Aspects of Declarative
Languages. 2005.
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tochv́ıla. Analysing sanity of requirements for avionics systems. Formal Aspects of
Computing, 2016.

6. Anton Belov, Marijn Heule, and João Marques-Silva. MUS extraction using clausal
proofs. In SAT, 2014.

7. Anton Belov and João Marques-Silva. Accelerating MUS extraction with recursive
model rotation. In FMCAD, 2011.

8. Anton Belov and Joao Marques-Silva. MUSer2: An efficient MUS extractor. Journal
on Satisfiability, Boolean Modeling and Computation, 2012.

9. Anton Belov and João P. Marques Silva. Minimally unsatisfiable boolean circuits.
In SAT, 2011.

10. Jaroslav Bend́ık. Consistency checking in requirements analysis. In ISSTA, 2017.
11. Jaroslav Bend́ık, Nikola Benes, Ivana Cerná, and Jiri Barnat. Tunable online
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