
Replication-Guided Enumeration
of Minimal Unsatisfiable Subsets

Jaroslav Bend́ık(B) and Ivana Černá

Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbendik,cerna}@fi.muni.cz

Abstract. In many areas of computer science, we are given an unsatis-
fiable Boolean formula F in CNF, i.e. a set of clauses, with the goal to
identify minimal unsatisfiable subsets (MUSes) of F . The more MUSes
are identified, the better insight into F ’s unsatisfiability is obtained.
Unfortunately, finding even a single MUS can be very time consuming
since it naturally subsumes repeatedly solving the satisfiability problem,
and thus a complete MUS enumeration is often practically intractable.
Therefore, contemporary MUS enumeration algorithms tend to identify
as many MUSes as possible within a given time limit. In this work, we
present a novel MUS enumeration algorithm. Compared to existing algo-
rithms, our algorithm is much more frugal in the number of performed
satisfiability checks. Consequently, our algorithm is often able to find
substantially more MUSes than contemporary algorithms.

1 Introduction

Given an unsatisfiable set F = {c1, . . . , cn} of Boolean clauses, a minimal unsat-
isfiable subset (MUS) of F is a set M ⊆ F such that M is unsatisfiable and for
all c ∈ M the set M \ {c} is satisfiable. MUSes represent the minimal reasons
for F ’s unsatisfiability, and as such, they find applications in a wide variety of
domains including, e.g., formal equivalence checking [18], Boolean function bi-
decomposition [17], counter-example guided abstraction refinement [1], circuit
error diagnosis [21], type debugging in Haskell [37], and many others [2,23–
25,32].

The more MUSes are identified, the better insight into the unsatisfiability
of F is obtained. However, there can be, in general, up to exponentially many
MUSes w.r.t. |F |, and thus, the complete MUS enumeration is often practically
intractable. Consequently, there have been proposed several algorithms, e.g., [4,
5,9,12,27,30,33,36], that enumerate MUSes online, i.e., one by one, and attempt
to identify as many MUSes as possibly within a given time limit.

Many of the algorithms can be classified as seed-shrink algorithms [11]. A
seed-shrink algorithm gradually explores subsets of F ; explored subsets are those,

This research was supported by ERDF “CyberSecurity, CyberCrime and Critical
Information Infrastructures Center of Excellence” (No. CZ.02.1.01/0.0/0.0/16 019/
0000822).

c© Springer Nature Switzerland AG 2020
H. Simonis (Ed.): CP 2020, LNCS 12333, pp. 37–54, 2020.
https://doi.org/10.1007/978-3-030-58475-7_3

http://crossmark.crossref.org/dialog/?doi=10.1007/978-3-030-58475-7_3&domain=pdf
https://doi.org/10.1007/978-3-030-58475-7_3

38 J. Bend́ık and I. Černá

whose satisfiability is already known by the algorithm, and unexplored are the
others. To find each single MUS, a seed-shrink algorithm first identifies an unsat-
isfiable unexplored subset, called a u-seed, and then shrinks the u-seed into a
MUS via a single MUS extraction subroutine. The exact way of finding and
shrinking u-seeds differ for individual algorithms. In general, the algorithms find
a u-seed by repeatedly checking unexplored subsets for satisfiability, via a SAT
solver, until they find an unsatisfiable one. Naturally, the performance of the
algorithms highly depends on the number these satisfiability checks.

In this paper, we propose a novel seed-shrink algorithm called UNIMUS.
The algorithm employs two novel techniques for finding u-seeds. One of the
techniques works on the same principle as the existing seed-shrinks algorithms
do: it checks unexplored subsets for satisfiability until it finds a u-seed. The
novelty is in the selection of subsets to be checked; we use the union of already
explored MUSes to identify a search-space where we can quickly find new u-
seeds. The other technique for finding u-seeds works on a fundamentally different
principle; we cheaply (in polynomial time) deduce that some unexplored subsets
are unsatisfiable. We experimentally compare UNIMUS with 4 contemporary
MUS enumeration algorithms on a standard collection of benchmarks. UNIMUS
outperforms all of its competitors on majority of the benchmarks. Remarkably,
UNIMUS often finds 10–100 times more MUSes than its competitors.

2 Preliminaries

A Boolean formula F = {c1, . . . , cn} in a conjunctive normal form is a set of
clauses over a set of variables Vars(F). A clause c = {l1, . . . , lk} is a set of
literals. A literal is either a variable x ∈ Vars(F) or its negation ¬x. A truth
assignment I is a mapping Vars(F) → {�,⊥}. A clause c ∈ F is satisfied by
an assignment I iff I(x) = � for some x ∈ c or I(y) = ⊥ for some ¬y ∈ c. The
formula F is satisfied by I iff I satisfies every clause c ∈ F ; in such a case I is a
model of F . Finally, F is satisfiable if it has a model; otherwise F is unsatisfiable.
Hereafter, we use F to denote the input formula of interest, capital letters, e.g.
N,T,K to denote subsets of F , small letters, e.g., c, d, ci to denote clauses of F ,
and small letters, e.g., x, y, xi to denote variables of F . Given a set X, we use
|X| to denote the cardinality of X, and P(X) to denote the power-set of X.

2.1 Minimum Unsatisfiability

Definition 1 (MUS). A set N , N ⊆ F , is a minimal unsatisfiable subset
(MUS) of F iff N is unsatisfiable and for all c ∈ N the set N \ {c} is satisfiable.

Note that the minimality refers to a set minimality, not to minimum cardi-
nality. Therefore, there can be MUSes with different cardinalities and in general,
there can be up to exponentially many MUSes of F w.r.t. |F | (see [35]). We write
UMUSF to denote the union of all MUSes of F .

Replication-Guided Enumeration of Minimal Unsatisfiable Subsets 39

Example 1. Assume that we are given a formula F = {c1 = {x1}, c2 =
{¬x1}, c3 = {x2}, c4 = {¬x1,¬x2}}. There are two MUSes: {c1, c2} and
{c1, c3, c4}, and UMUSF = F . The power-set of F is illustrated in Fig. 1a.

Definition 2 (critical clause). Let U be an unsatisfiable subset of F . A clause
c ∈ U is critical for U iff U \ {c} is satisfiable.

Note that if c is critical for U then c has to be contained in every unsatisfiable
subset of U , and especially in every MUS of U . Furthermore, note that U is a
MUS if and only if every clause c ∈ U is critical for U .

0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

(a)

0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

(b)

Fig. 1. a) illustrates the power-set of the set F of clauses from Example 1. We encode
individual subsets of F as bit-vectors; for example, the subset {c1, c3, c4} is written as
1011. The subsets with a dashed border are the unsatisfiable subsets, and the others
are satisfiable subsets. The MUSes are filled with a background color. b) illustrates the
explored and unexplored subsets from Example 2. (Color figure online)

Finally, we exploit capabilities of contemporary SAT solvers. Given a set
N ⊆ F , many of SAT solvers are able to provide an unsat core of N when N is
unsatisfiable, and a model I of N when N is satisfiable. The unsat core is often
small, yet not necessarily minimal, unsatisfiable subset of N . The model I, on
the other hand, induces the model extension E of N defined as E = {c ∈ F | I
satisfies c}. Note that N ⊆ E and E is satisfiable (I is its model).

2.2 Unexplored Subsets

Every online MUS enumeration algorithm during its computation gradually
explores satisfiability of individual subsets of F . Explored subsets are those whose
satisfiability is already known by the algorithm and unexplored are the other
ones. We write Unexplored to denote the set of all unexplored subsets. Further-
more, we classify the unexplored subsets either as s-seeds or u-seeds; s-seeds are
satisfiable unexplored subsets and u-seeds are unsatisfiable unexplored subsets.

Note that if a subset U of F is unsatisfiable, then also every superset of U is
unsatisfiable. Therefore, when U becomes explored, then also all supersets of U
become explored. Dually, when a satisfiable S, S ⊆ F , becomes explored, then
also all subsets of S become explored since they are necessarily also satisfiable.

40 J. Bend́ık and I. Černá

Algorithm 1: Seed-Shrink Scheme
1 Unexplored ← P(F)
2 while there is a u-seed do
3 S ← find a u-seed
4 Smus ← shrink(S)
5 output Smus

6 Unexplored ← Unexplored \ {X |X ⊆ Smus ∨ X ⊇ Smus}

Observation 1. If N is a u-seed, then every unsatisfiable subset of N is also a
u-seed. Dually, if N is an s-seed then every satisfiable superset of N is an s-seed.

Example 2 Figure 1b shows a possible state of exploration of the power-set of F
from Example 1. There are seven explored satisfiable subsets (green with solid
border), two explored unsatisfiable subsets (red with dashed border), four s-seeds
(black with solid border), and three u-seeds (black with dashed border).

Note that based on Unexplored, we can mine some critical clauses for some
u-seeds. For instance, in Example 2, we can see that c2 is critical for the u-seed
U = {c1, c2, c3} since U \ {c2} is explored and thus satisfiable (Observation 1).

Definition 3 (minable critical). Let U be a u-seed and c a critical clause for
U . The clause c is a minable critical clause for U if U \ {c} �∈ Unexplored.

Details on how exactly we represent and perform operations over Unexplored
are postponed to Sect. 3.5.

2.3 Seed-Shrink Scheme

Many of existing MUS enumeration algorithms, e.g., [6,9,12,28,36], and includ-
ing the algorithm we present in this paper, can be classified as seed-shrink algo-
rithms [11]. The base scheme (Algorithm 1) works iteratively. Each iteration
starts by identifying a u-seed S. Then, the u-seed S is shrunk into a MUS Smus

via a single MUS extraction subroutine. The iteration is concluded by removing
all subsets and all supersets of the MUS from Unexplored since none of them
can be another MUS. The computation terminates once there is no more u-seed.

The exact way S is found differs for individual seed-shrink algorithms. In
general, existing algorithms identify S by repeatedly picking and checking an
unexplored subset for satisfiability until they find a u-seed. The algorithms vary
in which and how many unexplored subsets they check. In general, it is worth to
minimize the number of these checks as they are very expensive. Also, it generally
holds that the closer (w.r.t. set containment) the u-seed is to a MUS, the easier
it is to shrink the u-seed into a MUS. As for the shrinking, all the algorithms can
collect and exploit all the minable critical clauses for S; these clauses have to be
contained in every MUS of S and thus their prior knowledge can significantly
speed up the MUS extraction. However, the exact way the algorithms find the
MUS differ for individual algorithms. See Sects. 3.4 and 4 for more details.

Replication-Guided Enumeration of Minimal Unsatisfiable Subsets 41

Algorithm 2: UNIMUS

1 Unexplored ← P(F); B ← ∅
2 while Unexplored �= ∅ do
3 B ← refine(B)
4 UNIMUSCore(B)

3 Algorithm

Our MUS enumeration algorithm, called UNIMUS, is based on the seed-shrink
scheme. It employs a novel shrinking procedure. Moreover, it employs two novel
approaches for finding u-seeds. One of the approaches is based on the same idea
as the contemporary seed-shrink algorithms: to find a u-seed, we are repeatedly
picking and checking for satisfiability (via a SAT solver) an unexplored subset
until we identify a u-seed. The novelty is in the choice of unexplored subsets to
be checked. Briefly, we maintain a base B and a search-space UnexB = {X |X ∈
Unexplored ∧ X ⊆ B} that is induced by the base. UNIMUS searches for u-
seeds only within UnexB . The base B (and thus UnexB) is maintained in a way
that allows identifying u-seeds with performing only few satisfiability checks.
Moreover, the u-seeds are very close to MUSes and thus relatively easy to shrink.

Our other approach for finding u-seeds is based on a fundamentally differ-
ent principle. Instead of checking unexplored subsets for satisfiablity via a SAT
solver, we deduce that some unexplored subsets are unsatisfiable. The deduction
is based on already identified MUSes and it is very cheap (polynomial).

3.1 Main Procedure

UNIMUS (Algorithm 2) first initializes Unexplored to P(F) and the base B to ∅.
Then, it in a while-loop repeats two procedures: refine that updates the base B,
and UNIMUSCore that identifies MUSes in the search-space UnexB = {X |X ∈
Unexplored ∧ X ⊆ B}. The algorithm terminates once Unexplored = ∅.

UNIMUSCore (Algorithm 3) works iteratively. Each iteration starts by pick-
ing a maximal element N of UnexB , i.e., N ∈ UnexB such that N ∪{c} �∈ UnexB
for every c ∈ B \N . Subsequently, a procedure isSAT is used to determine, via a
SAT solver, the satisfiability of N . Moreover, in dependence of N ’s satisfiability,
isSAT returns either an unsat core K or a model extension E of N . If N is unsat-
isfiable, the algorithm shrinks the core K into a MUS Kmus and removes from
Unexplored all subsets and all supersets of Kmus. Subsequently, a procedure
replicate is invoked which attempts to identify additional MUSes in UnexB .

In the other case, when N is satisfiable, we remove all subsets of E from
Unexplored. Then, N is used to guide the algorithm into a search-space with
more minable critical clauses. In particular, we know that for every c ∈ B \ N
the set N ∪{c} is explored and thus unsatisfiable (Observation 1). Consequently,
every clause c ∈ B \ N is critical for N ∪ {c} and especially for every u-seed
contained in N ∪ {c}. Moreover, all these critical clauses are minable critical as

42 J. Bend́ık and I. Černá

Algorithm 3: UNIMUSCore(B)
1 while {N ∈ Unexplored |N ⊆ B} �= ∅ do
2 N ← a maximal element of {X |X ∈ Unexplored ∧ X ⊆ B} // UnexB
3 (sat?, E,K) ← isSAT(N)
4 if not sat? then
5 Kmus ← shrink(K)
6 output Kmus

7 Unexplored ← Unexplored \ {X |X ⊆ Kmus ∨ X ⊇ Kmus}
8 replicate(Kmus, N)

9 else
10 Unexplored ← Unexplored \ {X |X ⊆ E}
11 if |B \ N | > 1 then
12 for c ∈ B \ N do UNIMUSCore(N ∪ {c})

all subsets of N were removed from Unexplored. If N∪{c} = B then c is minable
critical for every u-seed in the current search-space. Otherwise, if |B \ N | > 1,
we recursively call UNIMUSCore with a base B′ = N ∪ {c} for every c ∈ B \ N .

The procedures refine, shrink, and replicate are described in Sects. 3.2, 3.4, and
3.3, respectively. All procedures of UNIMUS follow two rules about Unexplored.
First, Unexplored is global, i.e., shared by the procedures. Second, we remove
an unsatisfiable set from Unexplored only if the set is a superset of an explic-
itly identified MUS. Consequently, no MUS can be removed from Unexplored
without being explicitly identified. Thus, when Algorithm2 terminates (i.e.,
Unexplored = ∅), it is guaranteed that all MUSes were identified.

Heuristics. According to the above description, UNIMUSCore terminates once
all subsets, and especially all MUSes, of B become explored. However, based on
our empirical experience, UNIMUSCore can get into a situation such that there
is a lot of s-seeds in UnexB but only few or even no u-seed. Consequently, the
MUS enumeration can get stuck for a while. To prevent such a situation, we
track the number of subsequent iterations of UNIMUSCore in which the set N
was satisfiable. If there are 5 such subsequent iterations, we backtrack from the
current recursive call of UNIMUSCore.

3.2 The Base and the Search-Space

The base B is modified in two situations. The first situation is the case of recur-
sive calls of UNIMUSCore which was described in the previous section. Here, we
describe the second situation which is an execution of the procedure refine before
each top-level call of UNIMUSCore. The goal is to identify a base B such that
u-seeds in UnexB can be easily found and are relatively easy to shrink.

We exploit the union UMUSF of all MUSes of F . Assume that we set B to
UMUSF . Since every MUS of F is contained in UMUSF , the induced search-space

Replication-Guided Enumeration of Minimal Unsatisfiable Subsets 43

Algorithm 4: refine(B)
1 while Unexplored �= ∅ do
2 T ← a maximal element of Unexplored
3 (sat?, E,K) ← isSAT(T)
4 if not sat? then
5 Kmus ← shrink(K)
6 output Kmus

7 Unexplored ← Unexplored \ {X |X ⊆ Kmus ∨ X ⊇ Kmus}
8 return B ∪ Kmus

9 else Unexplored ← Unexplored \ {X |X ⊆ T}
10 return B

UnexB would contain all MUSes. Moreover, compared to the whole F , the cardi-
nality of UMUSF can be relatively small and thus the u-seeds in UnexB would be
easy to shrink. Unfortunately, based on recent studies [14,31], computing UMUSF
is often practically intractable even for small input formulas. Thus, instead of
initially computing UMUSF , we use as the base B just an under-approximation
of UMUSF . Initially, we set B to ∅ (Algorithm 2, line 1) and in each call of refine
we attempt to refine (enlarge) the under-approximation. Eventually, B becomes
UMUSF and, thus, eventually the search-space will contain all MUSes of F .

The procedure refine (Algorithm 4) attempts to enlarge B with an unexplored
MUS. In each iteration, it picks a maximal element T of Unexplored, i.e., T ∈
Unexplored such that T ∪ {c} �∈ Unexplored for every c ∈ F \ T . Then, T is
checked for satisfiability via the procedure isSAT. If T is unsatisfiable, then isSAT
also returns an unsat core K of T , refine shrinks the core K into a MUS Kmus and
based on Kmus updates the set Unexplored. Subsequently, refine terminates and
returns an updated base B′ = B ∪ {Kmus}. Otherwise, if T is satisfiable, refine
removes all subsets of T from Unexplored and continues with a next iteration.

There is no guarantee that each call of refine indeed enlarges B. One pos-
sibility is the corner case when all MUSes are already explored, but there are
some s-seeds left. Another possibility is that the search-space UnexB was not
completely explored in the last call of UNIMUSCore due to the preemptive ter-
mination heuristic. Thus, refine might identify a MUS that is a subset of B. Also,
note that the procedure refine is very similar to a MUS enumeration algorithm
MARCO [28]. The difference is that refine finds only a single unexplored MUS
whereas MARCO finds them all (see Sect. 4 for details).

3.3 MUS Replication

We now describe the procedure replicate(Kmus, N) that based on an identified
MUS Kmus of N attempts to identify additional unexplored MUSes. The proce-
dure follows the seed-shrink scheme, i.e., it searches for u-seeds and shrinks them
to MUSes. However, contrary to existing seed-shrink algorithms which identify

44 J. Bend́ık and I. Černá

Algorithm 5: replicate(Kmus, N)
1 M ← {Kmus}; rStack ← 〈Kmus〉
2 while rStack is not empty do
3 M ← rStack .pop()
4 for c ∈ M do
5 if c is minable critical for N then continue
6 S ← propagate(M, c,N,M)
7 if S is null then continue
8 Smus ← shrink(S)
9 output Smus

10 Unexplored ← Unexplored \ {X |X ⊆ Smus ∨ X ⊇ Smus}
11 M ← M ∪ {Smus}
12 rStack .push(Smus)

u-seeds via a SAT solver, replicate identifies u-seeds with a cheap (polynomial)
deduction technique; we call the technique MUS replication.

Each call of replicate possibly identifies several unexplored MUSes and all
these MUSes are subsets of N . Note that since N is a subset of the base B in
Algorithm 3, all MUSes identified by replicate are contained in the search-space
UnexB. Also, note that when replicate is called, Kmus is the only explored MUS
of N (since N was a u-seed that we shrunk to Kmus). In the following, we will
use M to denote the set of all explored MUSes of N , i.e., initially, M = {Kmus}.

Main Procedure. The main procedure of replicate (Algorithm 5) maintains
two data-structures: the set M and a stack rStack . The computation starts by
initializing both M and rStack to contain the MUS Kmus. The rest of replicate
is formed by two nested loops. In each iteration of the outer loop, replicate pops
a MUS M from the stack. In the nested loop, M is used to identify possibly
several unexplored MUSes. In particular, for each clause c ∈ M the algorithm
attempts to identify a u-seed S such that M \ {c} ⊂ S ⊆ N \ {c}. Observe that
if c is minable critical for N then such a u-seed cannot exist; thus, we skip such
clauses. The attempt to find such S is carried out by a procedure propagate. If
propagate fails to find the u-seed, the inner loop proceeds with a next iteration.
Otherwise, the u-seed S is shrunk into a MUS Smus and the set Unexplored
is appropriately updated. The iteration is concluded by adding Smus to M and
also pushing Smus to rStack , i.e., each identified MUS is used to possibly identify
additional MUSes. The computation terminates once rStack becomes empty.

Propagate. The procedure propagate is based on the well-known concepts of
backbone literals and unit propagation [16,26]. Given a formula P , a literal l is
a backbone literal of P iff every model of P satisfies {l}. A backbone of P is a
set of backbone literals of P . If A is a backbone of P then A is also a backbone
of every superset of P . A clause d is a unit clause iff |d| = 1. Note that if d is a
unit clause of P then the literal l ∈ d is a backbone literal of P .

Replication-Guided Enumeration of Minimal Unsatisfiable Subsets 45

Given a backbone A of P , the backbone propagation can simplify P and pos-
sibly show that P is unsatisfiable. In particular, for every l ∈ A and every clause
d ∈ P such that ¬l ∈ d, we remove the literal ¬l from d (since no model of P can
satisfy ¬l). If a new unit clause emerges during the propagation, the backbone
literal that forms the unit clause will be also propagated. If the propagation
reduces a clause to an empty clause, then the original P is unsatisfiable.

The procedure propagate employs backbone propagation to identify a u-seed
S such that M \ {c} ⊂ S ⊆ N \ {c}. Observe that since M is unsatisfiable and
M \ {c} is satisfiable, then the set A = {¬l | l ∈ c} is a backbone of every such
S. Thus, one can pick such S and attempt to show, via propagating A, that S
is unsatisfiable. However, there are too many such S to choose from. Moreover,
we need to guarantee that we find S that is both unsatisfiable and unexplored.
Thus, instead of fixing a particular S and then trying to show its unsatisfiability,
we attempt to gradually build such S. Initially, we set S to M \{c} and we step-
by-step add clauses from N \ {c} to S. The addition of the clauses is driven by
a currently known backbone A of S and also by the set M of explored MUSes
to ensure that the resulting S is a u-seed.

Observation 2. For every unsatisfiable S, S ⊆ N \ {c}, it holds that S ∈
Unexplored (i.e., S is a u-seed) if and only if ∀X∈MS �⊇ X.

Proof. In UNIMUS, we remove from Unexplored only unsatisfiable sets that are
supersets of explored MUSes and all explored MUSes of N are stored in M.

Observation 2 shows which clauses can be added to the initial S while ensuring
that if we finally obtain an unsatisfiable S, then the final S will be unexplored.
Note that the initial S = M \ {c} trivially satisfies ∀X∈MM \ {c} �⊇ X since it
is satisfiable (M is a MUS). In the following, we show which clauses should be
added to S to eventually make it unsatisfiable.

Definition 4 (operation \\). Let d be a clause and A be a set of literals. The
the binary operation d \\ A creates the clause d \\ A = {l | l ∈ d and ¬l �∈ A}.
Definition 5 (units, violated). Let S be a set such that M\{c} ⊂ S ⊆ N\{c},
and let A be a backbone of S. We define the following sets:

units(S,A) = {d ∈ N \ {c} | ∀X∈MS ∪ {d} �⊇ X ∧ |d \\ A| = 1}
violated(S,A) = {d ∈ N \ {c} | ∀X∈MS ∪ {d} �⊇ X ∧ |d \\ A| = 0}

Informally, a clause d ∈ N \ {c} belongs to units(S,A) (violated(S,A)) if
the propagation of A would simplify d to a unit clause (empty clause) and,
simultaneously, d ∈ S or d can be added to S in a harmony with Observation 2.

Observation 3. For every S such that M \{c} ⊂ S ⊆ N \{c}, a backbone A of
S, and a clause d ∈ units(S,A), it holds that A∪d\\A is a backbone of S ∪{d}.
Proof. Assume that d = {l, l0, . . . , lk} where l = d \\ A and {¬l0, . . . ,¬lk} ⊆ A.
Since A is a backbone of S then every model of S satisfies {{¬l0}, . . . , {¬lk}}.
Consequently, every model of S ∪ {d} satisfies {l}.

46 J. Bend́ık and I. Černá

Algorithm 6: propagate(M ,c,N ,M)
1 S ← M \ {c}; A ← {¬l | l ∈ c}; H ← {c}
2 while units(S ,A) \ H �= ∅ ∧ violated(S ,A) = ∅ do
3 d ← choose d ∈ units(S ,A) \ H
4 S ← S ∪ {d}; H ← H ∪ {d}; A ← A ∪ d \\ A

5 if violated(S ,A) = ∅ then return null
6 else
7 d ← choose d ∈ violated(S ,A)
8 return S ∪ {d}

Observation 4. For every S such that M \ {c} ⊂ S ⊆ N \ {c}, a backbone A
of S, and a clause d ∈ violated(S,A), it holds that S ∪ {d} is unsatisfiable.

Proof. Assume that d = {l0, . . . , lq}. As d ∈ violated(S,A) then {¬l0, . . . ,¬lq} ⊆
A. Since A is a backbone of S then every model of S satisfies {{¬l0}, . . . , {¬lq}},
i.e., no model of S satisfies d.

The procedure propagate (Algorithm 6) maintains three data structures: the
sets S and A, and an auxiliary set H for storing clauses that were used to enlarge
A. Initially, S = M \ {c}, A = {¬l | l ∈ c} and H = {c}. In each iteration,
propagate picks a clause d ∈ units(S ,A) \ H and, based on Observation 3, adds
d to S and to H, and the literal of d \\ A to A. The loop terminates once
there is no more backbone literal to propagate (units(S ,A) \ H = ∅), or once
violated(S ,A) �= ∅. If violated(S ,A) = ∅, propagate failed to find a u-seed. Other-
wise, propagate picks a clause d ∈ violated(S ,A) and returns the u-seed S ∪ {d}.

Finally, note that backbone propagation is cheap (polynomial) but it is not a
complete technique for deciding satisfiability. Consequently, it can happen that
there is a u-seed S, M \ {c} ⊂ S ⊆ N \ {c}, but MUS replication fails to find it.

3.4 Shrink

Existing seed-shrink algorithms can be divided into two groups. Algorithms from
one group, e.g. [4,5,13], implement the shrinking via a custom single MUS extrac-
tor that fully shares information with the overall MUS enumeration process.
Consequently, all information obtained during shrinking can be exploited by the
overall MUS enumeration algorithm and vice versa. Algorithms from the other
group, e.g. [9,12,28], implement the shrinking via an external, black-box, single
MUS extraction tool. The advantage is that one can always use the currently
best available single MUS extractor to implement the shrinking. On the other
hand, the black-box extractor cannot fully share information with the overall
MUS enumeration algorithm. The only output of the extractor is a MUS of a
given u-seed N . As for the input, besides the u-seed N , contemporary single
MUS extractors, e.g., [4,8], allow the user to provide also a set C of clauses that
are critical for N since a prior knowledge of C can significantly speed up the

Replication-Guided Enumeration of Minimal Unsatisfiable Subsets 47

Algorithm 7: criticalExtension(N)
1 C ← collect all minable critical clauses for N
2 Q ← C
3 while Q �= ∅ do
4 c ← pick c ∈ Q
5 Q ← Q \ {c}
6 for l ∈ c do
7 M ← {d ∈ N | ¬l ∈ d}
8 if |M | = 1 and M ∩ C = ∅ then
9 C ← C ∪ M ; Q ← Q ∪ M

10 return C

extraction. Thus, contemporary algorithms [9,12,28] collect all minable critical
clauses for N and pass them to the single MUS extractor together with N .

In our work, we follow the black-box approach, i.e., to find a MUS of a u-seed
N , we first identify a set C of clauses that are critical for N and then pass N
and C to an external single MUS extractor (e.g., [4,8]). However, contrary to
existing algorithms, we identify more than just minable critical clauses for N .
We introduce a technique that, based on the minable critical clauses for N , can
cheaply deduce that some other clauses are critical for N . We call the deduction
technique critical extension and it is based on the following observation.

Observation 5. Let N be a u-seed, c ∈ N a critical clause for N , and l ∈ c.
Moreover, let M ⊆ N be the set of all clauses of N that contain the literal ¬l.
If |M | = 1 then the clause d ∈ M is critical for N , i.e. N \ {d} is satisfiable.

Proof. Assume that N \ {d} is unsatisfiable. Since c is critical for N , then c is
critical also for N \{d}. Thus, N \{c, d} has a model and every its model satisfies
{¬l} (as l ∈ c) which contradicts that ¬l is contained only in d.

The critical extension technique (Algorithm 7) takes as an input a u-seed N
and outputs a set C of clauses that are critical for N . The algorithm starts by
collecting (see Sect. 3.5) all minable critical clauses for N and stores them to C
and also to an auxiliary set Q. The rest of the computation works iteratively. In
each iteration, the algorithm picks and removes a clause c from Q and employs
Observation 5 on c. In particular, for each literal l ∈ c, the algorithm builds the
set M = {d ∈ N | ¬l ∈ d}. If M contains only a single clause, say d, and d �∈ C,
then d is a new critical clause for N and thus it is added to C and to Q. The
computation terminates once Q becomes empty.

Our technique is similar to model rotation [4,7] which identifies additional
critical clauses based on a critical clause c of N and a model of N \ {c}. The
difference is that we do not need the model. Another approach [38] that also
does not need the model is based on rotation edges in a flip graph of F .

48 J. Bend́ık and I. Černá

3.5 Representation of Unexplored Subsets

To maintain the set Unexplored, we adopt a representation that was originally
proposed by Liffiton et al. [28] and nowadays is used by many MUS enumeration
algorithms (e.g., [5,9,12,33]). Given a formula F = {c1, . . . , cn}, we introduce a
set X = {x1, . . . , xn} of Boolean variables. Note that every valuation of X cor-
responds to a subset of F and vice versa. To represent Unexplored, we maintain
two formulas, map+ and map−, over X such that every model of map+ ∧ map−

corresponds to an element of Unexplored and vice versa. In particular:

– Initially, Unexplored = P(F), thus we set map+ = map− = �.
– To remove a set U , U ⊆ F , and all supersets of U from Unexplored, we add

to map− the clause
∨

ci∈U ¬xi.
– Dually, to remove a set S, S ⊆ F , and all subsets of S from Unexplored, we

add to map+ the clause
∨

ci �∈S xi.

To get an arbitrary element of Unexplored, one can ask a SAT solver for a
model of map+ ∧ map−. However, in UNIMUS, we need to obtain more specific
unexplored subsets. Given a set B, we require a maximal element N of UnexB =
{X |X ∈ Unexplored ∧ X ⊆ B}. One of SAT solvers that allows us to obtain
such N is miniSAT [20]. To obtain N , we instruct miniSAT to fix the values of
the variables {xi | ci �∈ B} to ⊥ and ask it for a maximal model of map+∧map−.

Finally, given a u-seed U , to collect all minable critical clauses of U we check
for each c ∈ U whether U \ {c} corresponds to a model of map+ ∧ map−. To
do it efficiently, observe that the information represented by map− is irrelevant.
Intuitively, map− requires an absence of clauses, and since U satisfies map− (it
is a u-seed), the set U \ {c} also satisfies map−. Thus, c is minable critical for
U iff U \ {c} does not correspond to a model of map+.

4 Related Work

MUS enumeration was extensively studied in the past decades and many various
algorithms were proposed (see e.g., [4–6,9,10,12,19,21,22,27,29,33,34,36]). In
the following, we briefly describe contemporary online MUS enumeration algo-
rithms.

FLINT [33] computes MUSes in rounds and each round consists of two phases:
relaxing and strengthening. In the relaxing phase, the algorithm starts with an
unsatisfiable formula U and weakens it by iteratively relaxing its unsat core until
it gets a satisfiable formula S. The intermediate unsat cores are used to extract
MUSes. The resulting satisfiable formula S is passed to the second phase, where
the formula is again strengthened to an unsatisfiable formula that is used in the
next round as an input for the relaxing phase.

MARCO [28] and ReMUS [12] are algorithms based on the seed-shrink scheme.
That is, similarly as UNIMUS, to find each single MUS, the algorithms first
identify a u-seed and then shrink the u-seed into a MUS. Before the shrinking,
the algorithms first reduce the u-seed to its unsat core (provided by a SAT solver)

Replication-Guided Enumeration of Minimal Unsatisfiable Subsets 49

and they also collect the minable critical clauses for the u-seed. The shrinking is
performed via an external, black-box subroutine. The main difference between
the two algorithms is how they find the u-seed. MARCO is iteratively picking
and checking for satisfiability a maximal unexplored subset of F , until it finds
a u-seed S. Since unsatisfiable subsets of F are naturally more concentrated
among the larger subsets, MARCO usually performs only few checks to find the
u-seed. However, large u-seeds are generally hard to shrink. Thus, the efficiency
of MARCO crucially depends on the capability of the SAT solver to provide
a reasonably small unsat core of S. ReMUS, in contrast to MARCO, tends to
identify u-seeds that are relatively small and thus easy to shrink. In particular,
the initial u-seed S is found among the maximal unexplored subsets of F and
then shrunk into a MUS Smus. To find another MUS, ReMUS picks some R such
that Smus ⊂ R ⊂ S, and recursively searches for u-seeds among the maximal
unexplored subsets of R. The (expected) size of the u-seeds thus decreases with
each recursive call. The disadvantage of ReMUS is that it was designed as a
domain-agnostic MUS enumeration algorithm, i.e., F can be a set of constraints
in an arbitrary logic (e.g., SMT or LTL). Consequently, ReMUS does not directly
employ any techniques that are specific for the SAT (Boolean) domain (such as
the MUS replication and the critical extension that we use in UNIMUS).

MCSMUS [5] can be seen as another instantiation of the seed-shrink scheme.
Contrary to MARCO, ReMUS, and UNIMUS, MCSMUS implements the shrinking
via a custom single MUS extraction procedure that fully shares information and
works in a synergy with the overall MUS enumeration algorithm. For example,
satisfiable subsets of F that are identified during shrinking are remembered by
MCSMUS and exploited in the further computation.

5 Experimental Evaluation

We have experimentally compared UNIMUS with four contemporary MUS enu-
meration algorithms: MARCO [28], MCSMUS [5], FLINT [33], and ReMUS [12]. A
precompiled binary of FLINT was kindly provided to us by its author, Nina Nar-
odytska. The other three tools are available at https://sun.iwu.edu/∼mliffito/
marco/, https://bitbucket.org/gkatsi/mcsmus/src, and https://github.com/jar-
ben/mustool. The implementation of UNIMUS is available at: https://github.
com/jar-ben/unimus.

We used the best (default) settings for all evaluated tools. Note that individ-
ual tools use different SAT solvers and different shrinking subroutines. ReMUS,
MARCO and FLINT use the tool muser2 [8] for shrinking, MCSMUS uses its
custom shrinking subroutine, and in UNIMUS we employ the shrinking proce-
dure from the MCSMUS tool. As for SAT solvers, MARCO and ReMUS use
miniSAT [20], MCSMUS uses glucose [3] and UNIMUS uses CaDiCaL [15].

As benchmarks, we used a collection of 291 CNF formulas from the MUS
track of the SAT 2011 Competition.1 This collection is standardly used in MUS
related papers, including the papers that presented our four competitors. All
1 http://www.cril.univ-artois.fr/SAT11/.

https://sun.iwu.edu/~mliffito/marco/
https://sun.iwu.edu/~mliffito/marco/
https://bitbucket.org/gkatsi/mcsmus/src
https://github.com/jar-ben/mustool
https://github.com/jar-ben/mustool
https://github.com/jar-ben/unimus
https://github.com/jar-ben/unimus
http://www.cril.univ-artois.fr/SAT11/

50 J. Bend́ık and I. Černá

experiments were run using a time limit of 3600 s and computed on an AMD
16-Core Processor and 1 TB memory machine running Debian Linux. Complete
results are available in an online appendix: https://www.fi.muni.cz/∼xbendik/
research/unimus.

Fig. 2. Percentage of MUSes found by
MUS replication.

Fig. 3. 5% truncated mean of rankings
after each 60 s.

Manifestation of MUS Replication. MUS replication is a crucial part of
UNIMUS as, to the best of our knowledge, it is the first existing technique that
identifies u-seeds in polynomial time. Therefore, we are interested in what is
the percentage of u-seeds, and thus MUSes, that UNIMUS identifies via MUS
replication. Figure 2 shows this percentage (y-axis) for individual benchmarks
(x-axis); the benchmarks are sorted by the percentage. We computed the per-
centage only for the 248 benchmarks where UNIMUS found at least 5 MUSes.
Remarkably, in case of 161 benchmarks, the percentage is higher than 90%, and
in case of 130 benchmarks, it is higher than 99%.2 Unfortunately, there are 49
benchmarks where MUS replication found no u-seed at all. Let us note that 40
of the 49 benchmarks are from the same family of benchmarks, called “fdmus”.
The MUS benchmarks from the SAT competition consist of several families and
benchmarks in a family often have very similar structure. Most of the families
contain only few benchmarks, however, there are several larger families and the
“fdmus” family is by far the largest one.

Number of Indentified MUSes. We now examine the number of identified
MUSes by the evaluated algorithms on individual benchmarks within the time
limit of 3600 s. In case of 28 benchmarks, all the algorithms completed the enu-
meration, and thus found the same number of MUSes. Therefore, we focus here
only on the remaining 263 benchmarks.

Scatter plots in Fig. 4 pair-wise compare UNIMUS with its competitors. Each
point in the plot shows a result from a single benchmark. The x-coordinate of
a point is given be the algorithm that labels the x-axis and the y-coordinate
by the algorithm that labels the y-axis. The plots are in a log-scale and hence
cannot show points with a zero coordinate, i.e., benchmarks where at least one

2 Thus, in those benchmarks, SAT solver calls are performed almost only by the shrink-
ing procedure (which uses glucose in our implementation).

https://www.fi.muni.cz/~xbendik/research/unimus
https://www.fi.muni.cz/~xbendik/research/unimus

Replication-Guided Enumeration of Minimal Unsatisfiable Subsets 51

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

21

231

11

#
 M

U
Se

s
FL

IN
T

MUSes UNIMUS

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

9

242

12

#
 M

U
Se

s
M

AR
CO

MUSes UNIMUS

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

57

195

11

#
 M

U
Se

s
M

CS
M

U
S

MUSes UNIMUS

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

63

187

13

#
 M

U
Se

s
Re

M
U

S

MUSes UNIMUS

Fig. 4. Scatter plots comparing the number of produced MUSes.

algorithm found no MUS. Therefore, we lifted the points with a zero coordinate
to the first coordinate. Moreover, we provide three numbers right/above/in the
right corner of the plot, that show the number of points below/above/on the
diagonal. For example, UNIMUS found more/less/equal number of MUSes than
MARCO in case of 242/9/12 benchmarks. We also use green and red colors to
highlight individual orders of magnitude (of 10).

In Fig. 3, we examine the overall ranking of the algorithms. In particular,
assume that for a benchmark B both UNIMUS and ReMUS found 100 MUSes,
MCSMUS found 80 MUSes, and MARCO and FLINT found 50 MUSes. In such a
case, UNIMUS and ReMUS share the 1st (best) rank for B, MCSMUS is 3rd, and
MARCO and FLINT share the 4th position. For each algorithm, we computed
an arithmetic mean of the ranking on all benchmarks. To eliminate the effect of
outliers (benchmarks with an extreme ranking), we computed the 5% truncated
arithmetic mean, i.e., for each algorithm we discarded the 5% of benchmarks
where the algorithm achieved the best and the worst ranking. Moreover, to
capture the performance stability of the algorithms in time, we computed the
mean for each subsequent 60 s of the computation.

UNIMUS conclusively dominates all its competitors. It maintained the best
ranking during the whole time period and gradually improved the ranking
towards the final value 1.3. The closest, yet still very distant, competitors are
ReMUS and MCSMUS who maintained ranking around 2.75. FLINT and MARCO

52 J. Bend́ık and I. Černá

achieved the final raking around 3.7. UNIMUS also dominated in the pair-wise
comparison. It found more MUSes than all its competitors on an overwhelming
majority of benchmarks and, remarkably, the difference was often several orders
of magnitude.

References

1. Andraus, Z.S., Liffiton, M.H., Sakallah, K.A.: Cegar-based formal hardware ver-
ification: a case study. Technical report, University of Michigan, CSE-TR-531-07
(2007)

2. Arif, M.F., Menćıa, C., Ignatiev, A., Manthey, N., Peñaloza, R., Marques-Silva, J.:
BEACON: an efficient sat-based tool for debugging EL+ ontologies. In: Creignou,
N., Le Berre, D. (eds.) SAT 2016. LNCS, vol. 9710, pp. 521–530. Springer, Cham
(2016). https://doi.org/10.1007/978-3-319-40970-2 32

3. Audemard, G., Simon, L.: Predicting learnt clauses quality in modern SAT solvers.
In: IJCAI, pp. 399–404 (2009)

4. Bacchus, F., Katsirelos, G.: Using minimal correction sets to more efficiently com-
pute minimal unsatisfiable sets. In: Kroening, D., Păsăreanu, C.S. (eds.) CAV 2015.
LNCS, vol. 9207, pp. 70–86. Springer, Cham (2015). https://doi.org/10.1007/978-
3-319-21668-3 5

5. Bacchus, F., Katsirelos, G.: Finding a collection of MUSes incrementally. In: Quim-
per, C.-G. (ed.) CPAIOR 2016. LNCS, vol. 9676, pp. 35–44. Springer, Cham (2016).
https://doi.org/10.1007/978-3-319-33954-2 3

6. Bailey, J., Stuckey, P.J.: Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In: Hermenegildo, M.V., Cabeza, D. (eds.) PADL
2005. LNCS, vol. 3350, pp. 174–186. Springer, Heidelberg (2005). https://doi.org/
10.1007/978-3-540-30557-6 14

7. Belov, A., Marques-Silva, J.: Accelerating MUS extraction with recursive model
rotation. In: FMCAD, pp. 37–40. FMCAD Inc. (2011)

8. Belov, A., Marques-Silva, J.: MUSer2: an efficient MUS extractor. JSAT 8, 123–128
(2012)

9. Bend́ık, J., Beneš, N., Černá, I., Barnat, J.: Tunable online MUS/MSS enumera-
tion. In: FSTTCS, LIPIcs, vol. 65, pages 50:1–50:13. Schloss Dagstuhl - Leibniz-
Zentrum fuer Informatik (2016)

10. Jaroslav Bend́ık and Ivana Černá. Evaluation of domain agnostic approaches for
enumeration of minimal unsatisfiable subsets. In: LPAR, EPiC Series in Comput-
ing, vol. 57, pp. 131–142. EasyChair (2018)

11. Bend́ık, J., Černá, I.: MUST: minimal unsatisfiable subsets enumeration tool.
TACAS 2020. LNCS, vol. 12078, pp. 135–152. Springer, Cham (2020). https://
doi.org/10.1007/978-3-030-45190-5 8

12. Bend́ık, J., Černá, I., Beneš, N.: Recursive online enumeration of all minimal unsat-
isfiable subsets. In: Lahiri, S.K., Wang, C. (eds.) ATVA 2018. LNCS, vol. 11138,
pp. 143–159. Springer, Cham (2018). https://doi.org/10.1007/978-3-030-01090-4 9

13. Bend́ık, J., Ghassabani, E., Whalen, M., Černá, I.: Online enumeration of all min-
imal inductive validity cores. In: Johnsen, E.B., Schaefer, I. (eds.) SEFM 2018.
LNCS, vol. 10886, pp. 189–204. Springer, Cham (2018). https://doi.org/10.1007/
978-3-319-92970-5 12

14. Bend́ık, J., Meel, K.S.: Approximate counting of minimal unsatisfiable subsets. In:
Lahiri, S.K., Wang, C. (eds.) CAV 2020. LNCS, vol. 12224, pp. 439–462. Springer,
Cham (2020). https://doi.org/10.1007/978-3-030-53288-8 21

https://doi.org/10.1007/978-3-319-40970-2_32
https://doi.org/10.1007/978-3-319-21668-3_5
https://doi.org/10.1007/978-3-319-21668-3_5
https://doi.org/10.1007/978-3-319-33954-2_3
https://doi.org/10.1007/978-3-540-30557-6_14
https://doi.org/10.1007/978-3-540-30557-6_14
https://doi.org/10.1007/978-3-030-45190-5_8
https://doi.org/10.1007/978-3-030-45190-5_8
https://doi.org/10.1007/978-3-030-01090-4_9
https://doi.org/10.1007/978-3-319-92970-5_12
https://doi.org/10.1007/978-3-319-92970-5_12
https://doi.org/10.1007/978-3-030-53288-8_21

Replication-Guided Enumeration of Minimal Unsatisfiable Subsets 53

15. Biere, A.: Cadical, lingeling, plingeling, treengeling and yalsat entering the sat
competition 2018. In: Proceedings of SAT Competition, pp. 13–14 (2018)

16. Bollobás, B., Borgs, C., Chayes, J.T., Kim, J.H., Wilson, D.B.: The scaling window
of the 2-sat transition. Random Struct. Algorithms 18(3), 201–256 (2001)

17. Chen, H., Marques-Silva, J.: Improvements to satisfiability-based Boolean function
bi-decomposition. In: VLSI-SoC, pp. 142–147. IEEE (2011)

18. Cohen, O., Gordon, M., Lifshits, M., Nadel, A., Ryvchin, V.: Designers work less
with quality formal equivalence checking. In: Design and Verification Conference
(DVCon). Citeseer (2010)

19. de la Banda, M.J.G., Stuckey, P.J., Wazny, J.: Finding all minimal unsatisfiable
subsets. In: PPDP, pp. 32–43. ACM (2003)

20. Eén, N., Sörensson, N.: An extensible SAT-solver. In: Giunchiglia, E., Tacchella,
A. (eds.) SAT 2003. LNCS, vol. 2919, pp. 502–518. Springer, Heidelberg (2004).
https://doi.org/10.1007/978-3-540-24605-3 37

21. Han, B., Lee, S.-J.: Deriving minimal conflict sets by CS-trees with mark set in
diagnosis from first principles. IEEE Trans. Syst. Man Cybern. Part B 29(2), 281–
286 (1999)

22. Hou, A.: A theory of measurement in diagnosis from first principles. AI 65(2),
281–328 (1994)

23. Hunter, A., Konieczny, S.: Measuring inconsistency through minimal inconsistent
sets. In: KR, pp. 358–366. AAAI Press (2008)

24. Ivrii, A., Malik, S., Meel, K.S., Vardi, M.Y.: On computing minimal independent
support and its applications to sampling and counting. Constraints 21(1), 41–58
(2015). https://doi.org/10.1007/s10601-015-9204-z

25. Jannach, D., Schmitz, T.: Model-based diagnosis of spreadsheet programs: a
constraint-based debugging approach. Autom. Softw. Eng. 23(1), 105–144 (2014).
https://doi.org/10.1007/s10515-014-0141-7

26. Kilby, P., Slaney, J.K., Thiébaux, S., Walsh, T.: Backbones and backdoors in sat-
isfiability. In: AAAI, pp. 1368–1373. AAAI Press/The MIT Press (2005)

27. Liffiton, M.H., Malik, A.: Enumerating infeasibility: finding multiple MUSes
Quickly. In: Gomes, C., Sellmann, M. (eds.) CPAIOR 2013. LNCS, vol. 7874, pp.
160–175. Springer, Heidelberg (2013). https://doi.org/10.1007/978-3-642-38171-
3 11

28. Liffiton, M.H., Previti, A., Malik, A., Marques-Silva, J.: Fast, flexible MUS enu-
meration. Constraints 21(2), 223–250 (2015). https://doi.org/10.1007/s10601-015-
9183-0

29. Liffiton, M.H., Sakallah, K.A.: Algorithms for computing minimal unsatisfiable
subsets of constraints. JAR 40(1), 1–33 (2008). https://doi.org/10.1007/s10817-
007-9084-z

30. Luo, J., Liu, S.: Accelerating MUS enumeration by inconsistency graph partition-
ing. Sci. China Inf. Sci. 62(11), 212104 (2019). https://doi.org/10.1007/s11432-
019-9881-0

31. Menćıa, C., Kullmann, O., Ignatiev, A., Marques-Silva, J.: On computing the union
of MUSes. In: Janota, M., Lynce, I. (eds.) SAT 2019. LNCS, vol. 11628, pp. 211–
221. Springer, Cham (2019). https://doi.org/10.1007/978-3-030-24258-9 15

32. Kedian, M.: Formulas free from inconsistency: an atom-centric characterization in
priest’s minimally inconsistent LP. J. Artif. Intell. Res. 66, 279–296 (2019)

33. Narodytska, N., Bjørner, N., Marinescu, M.-C., Sagiv, M.: Core-guided minimal
correction set and core enumeration. In: IJCAI, pp. 1353–1361 (2018). https://
www.ijcai.org/

https://doi.org/10.1007/978-3-540-24605-3_37
https://doi.org/10.1007/s10601-015-9204-z
https://doi.org/10.1007/s10515-014-0141-7
https://doi.org/10.1007/978-3-642-38171-3_11
https://doi.org/10.1007/978-3-642-38171-3_11
https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1007/s10601-015-9183-0
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1007/s10817-007-9084-z
https://doi.org/10.1007/s11432-019-9881-0
https://doi.org/10.1007/s11432-019-9881-0
https://doi.org/10.1007/978-3-030-24258-9_15
https://www.ijcai.org/
https://www.ijcai.org/

54 J. Bend́ık and I. Černá

34. Previti, A., Marques-Silva, J.: Partial MUS enumeration. In: AAAI. AAAI Press
(2013)

35. Sperner, E.: Ein satz über untermengen einer endlichen menge. Math. Z. 27(1),
544–548 (1928). https://doi.org/10.1007/BF01171114

36. Stern, R.T., Kalech, M., Feldman, A., Provan, G.M.: Exploring the duality in
conflict-directed model-based diagnosis. In: AAAI. AAAI Press (2012)

37. Stuckey, P.J., Sulzmann, M., Wazny, J.: Interactive type debugging in haskell. In:
Haskell, pp. 72–83. ACM (2003)

38. Wieringa, S.: Understanding, improving and parallelizing MUS finding using model
rotation. In: Milano, M. (ed.) CP 2012. LNCS, pp. 672–687. Springer, Heidelberg
(2012). https://doi.org/10.1007/978-3-642-33558-7 49

https://doi.org/10.1007/BF01171114
https://doi.org/10.1007/978-3-642-33558-7_49

	Replication-Guided Enumeration of Minimal Unsatisfiable Subsets
	1 Introduction
	2 Preliminaries
	2.1 Minimum Unsatisfiability
	2.2 Unexplored Subsets
	2.3 Seed-Shrink Scheme

	3 Algorithm
	3.1 Main Procedure
	3.2 The Base and the Search-Space
	3.3 MUS Replication
	3.4 Shrink
	3.5 Representation of Unexplored Subsets

	4 Related Work
	5 Experimental Evaluation
	References

