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Abstract—In many areas of computer science, we are given an
unsatisfiable formula F in CNF, i.e., a set of clauses, with the
goal to analyze the unsatisfiability. A kind of such analysis is to
identify Minimal Correction Subsets (MCSes) of F , i.e., minimal
subsets of clauses that need to be removed from F to make it
satisfiable. Equivalently, one might identify the complements of
MCSes, i.e., Maximal Satisfiable Subsets (MSSes) of F . The more
MSSes (MCSes) of F are identified, the better insight into the un-
satisfiability can be obtained. Hence, there were proposed many
algorithms for complete MSS (MCS) enumeration. Unfortunately,
the number of MSSes can be exponential w.r.t. |F |, which often
makes the complete enumeration practically intractable.

In this work, we attempt to cope with the intractability of
complete MSS enumeration by initiating the study on MSS
decomposition. In particular, we propose several techniques that
often allows for decomposing the input formula F into several
subformulas. Subsequently, we explicitly enumerate all MSSes
of the subformulas, and then combine those MSSes to form
MSSes of the original formula F . An extensive empirical study
demonstrates that due to the MSS decomposition, the number of
MSSes that need to be explicitly identified is often exponentially
smaller than the total number of MSSes. Consequently, we
are able to improve upon a scalability of contemporary MSS
enumeration approaches by many orders of magnitude.

I. INTRODUCTION

Boolean formulas in the Conjunctive Normal Form (CNF),
wherein we are given a set F “ tc1, . . . , cnu of Boolean
clauses, have been widely adopted as a suitable representation
language to model the behaviour of systems and properties. In
case we are given an unsatisfiable CNF formula F , the goal
is usually to analyze the unsatisfiability. To perform such an
analysis, two concepts are often used: a Minimal Unsatisfiable
Subset (MUS) of F , and a Minimal Correction Subset (MCS)
of F . Intuitively, an MUS represents a minimal reason for
the unsatisfiability, whereas an MCS is a minimal subset of
clauses that need to be removed from F to make it satisfiable.
A dual notion to an MCS is that of a Maximal Satisfiable
Subset (MSS), i.e., a satisfiable subset M of F such that for
every clause c P F zM the set MYtcu is unsatisfiable. It holds
that every MSS is a complement of an MCS of F and vice
versa, i.e., MSSes and MCSes represent the same information.

MCSes (MSSes) find many practical applications in various
areas of computer science. For instance, in the context of
belief update and argumentation, MCSes are used during an
update of the belief in the presence of an incoming contra-
dictory belief [16], [21]. Similarly, in the field of diagnosis
of constraint systems [5], [37], [49], MCSes represent the
constraints that need to be relaxed for the system to be conflict-
free. Another application of MSSes arises in the context of

the maximum satisfiability problem (MaxSAT), since MSSes
with the maximum cardinality correspond to the solutions of
MaxSAT. Yet other applications of MCSes can be found, e.g.,
during model based diagnosis [7], ontology debugging, or
axiom pinpointing [1].

Often, it is the case that finding just a single MCS is suffi-
cient. However, in many applications, the task of enumerating
several or even all MCSes (MSSes) is crucial for properly
understanding the underlying sources of the unsatisfiability.
For example, enumeration of minimal correction subsets is
essential in software fault localization [30]. In the context of
MaxSAT solving, a restricted MSS enumeration is effective
in approximately solving the problem if finding the exact
solution is intractable [41]. In the domain of diagnosis, there
have been proposed many diagnosis metrics that are based
on complete enumeration and counting of MSSes and MCSes
(see, e.g., [26], [52]). Moreover, there are several computa-
tional problems, such as enumeration of minimal unsatisfiable
subsets [37], prime implicants [28], and maximal and minimal
models [39], that can be reduced to MSS enumeration.

In the past decades, there have been proposed many ap-
proaches for enumeration of MSSes (see e.g., [5], [9], [11],
[22], [35], [39], [44], [51]). However, the complete MSS
enumeration is still often practically intractable [11]. One of
the reasons is that the identification of the individual MSSes
naturally subsumes checking several subsets of F for satisfi-
ability, and these checks are very expensive (NP-complete).
Another issue is that there can be in general exponentially
many MSSes of F w.r.t. the number |F | of clauses of F .

In spirit, the intractability of complete MSS enumeration
is very similar to the intractability that was dealt with in
the context of the Boolean model counting problem. That
is, given a Boolean formula H , count all models (satisfying
assignments) of H . The earliest approaches for model counting
were based on a complete model enumeration, however, since
the number of models can be exponential w.r.t. the number
of variables of H , the complete model enumeration is of-
ten practically intractable. Fortunately, due to an extensive
research in the past decades (e.g., [6], [43], [50], [53]), the
model counting problem is often practically feasible even
for formulas with exponentially many models. A substantial
ingredient of contemporary model counters is decomposition;
in particular, the counters are often able to decompose the
input formula H into several independent sub-formulas, then
count models of the sub-formulas, and multiply the sub-counts
to get the model count for the whole H . At this point, one
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might wonder whether it is possibly to perform some kind of
a decomposition in the context of MSS enumeration?

In this paper, we initiate the study on the problem of MSS
decomposition, and provide an affirmative answer to the above
question. In particular, we propose two decomposition tech-
niques that are applicable to some kinds of formulas. The first
technique attempts to directly decompose the input formula
F into several independent components (i.e., disjoint subsets
of clauses) based on literals in the individual clauses. Due
to the decomposition, we can first identify all MSSes of the
individual components (using any existing MSS enumerator),
and then form the MSSes of F by just cheaply composing the
MSSes of the components. Note that the sum of the MSSes
in the individual components can be exponentially smaller
than the total number of MSSes of F that we obtain from
the composition. The second technique is applicable when the
input formula F is not directly decomposable. In such a case,
we first attempt to identify a suitable cut K for F , i.e., a
subset K of F such that the formula F zK can be directly
decomposed. In this case, we can divide the MSSes of F into
two groups: 1) MSSes that are subsets of F zK, and 2) the
remaining MSSes of F . The former group can be decomposed
and solved via the first decomposition technique, whereas the
latter group can be identified via any existing MSS enumerator.

Based on the two decomposition techniques, we build a
novel MSS enumeration algorithm and experimentally com-
pare it with other contemporary MSS enumeration tools. Out
of 1491 benchmarks, the best contemporary approach can
solve only 415 benchmarks, whereas our approach solves
788 benchmarks. Moreover, whereas contemporary approaches
scale only to instances with at most 108 MSSes, our approach
can handle even benchmarks with 1022 MSSes.

Outline. The rest of the paper is organized as follows.
Section II introduces preliminaries and Section III discusses
related work. The two decomposition techniques are intro-
duced in Section IV, and our MSS enumeration algorithm is
presented in Section V. Section VI provides results of our ex-
perimental evaluation. Finally, Section VII discusses practical
limitations of our approach, and Section VIII concludes.

II. PRELIMINARIES

Standard definitions for propositional (Boolean) logic are
assumed. A Boolean formula F is built over a set VarspF q
of Boolean variables. A literal l is either a variable x P

VarspF q or its negation  x, and LitspF q denotes the set
of all literals used in F . A clause c “ tl1, . . . , lku is a set
of literals. A Boolean formula in conjunctive normal form
F “ tc1, . . . , cnu, shortly a CNF formula, is a set of clauses.

Given a CNF formula F , a valuation π of VarspF q is a
mapping π : VarspF q Ñ t1, 0u. The valuation π satisfies a
clause c P F iff there exists a variable x such that x P c and
πpxq “ 1 or  x P c and πpxq “ 0. Moreover, π satisfies F
if it satisfies every clause c P F ; such a valuation π is called
a model of F . Finally, F is satisfiable if it has a model, and
otherwise, F is unsatisfiable.
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Fig. 1: Illustration of PpF q from the Example 1. We denote
individual subsets of F as bit-vectors, e.g., tc1, c3u is written
as 1010. The subsets with a dashed border are the unsatisfiable
subsets, and the others are satisfiable subsets. The MUSes and
MSSes are filled with a background color.

Throughout the whole paper, we use F “ tc1, . . . , cnu
to denote the input unsatisfiable CNF formula of interest.
Moreover, we write just formula instead of CNF formula.
Finally, given a set X , we write PpXq to denote the power-set
of X , and |X| to denote the cardinality of X .

Definition 1 (MSS). A set N , N Ď F , is a maximal satisfiable
subset (MSS) of F iff N is satisfiable and for every c P F zN
the set N Y tcu is unsatisfiable.

Definition 2 (MCS). A set N , N Ď F , is a minimal correction
subset (MCS) of F iff F zN is satisfiable and for every c P N
the set F zpNztcuq is unsatisfiable. Equivalently, N is an MCS
of F iff F zN is an MSS of F .

Definition 3 (MUS). A set N , N Ď F , is a minimal
unsatisfiable subset (MUS) of F iff N is unsatisfiable and
for every c P N the set Nztcu is satisfiable.

Note that the maximality (minimality) concept used here is
a set maximality (minimality), and not a maximum (minimum)
cardinality as, e.g., in the MaxSAT problem. Consequently,
there can be MSSes (MUSes) with different cardinalities,
and in general, there can be up to Op2|F |q MSSes (MUSes)
of F (intuitively, there are exponentially many pair-wise
incomparable subsets of F (w.r.t. the subset inclusion) and
all of them can be MSSes (MUSes)). Given a formula N ,
we write MSSN , MCSN , and MUSN , to denote the set of all
MSSes, MCSes, and MUSes of N , respectively. Moreover,
given a subset K of N , we write MSSKN to denote the set of
all MSSes of N that contain at least a single clause from K,
i.e., MSSKN “ tM P MSSN |M XK ‰ Hu.

Example 1. We illustrate the concepts on a simple ex-
ample, depicted in Figure 1. Assume that F “ tc1 “

tx1u, c2 “ t x1u, c3 “ tx2u, c4 “ t x1, x2uu. There are
two MUSes: MUSF “ ttc1, c2u, tc1, c3, c4uu, three MSSes:
MSSF “ ttc1, c4u, tc1, c3u, tc2, c3, c4uu, and three MCSes:
MCSF “ ttc2, c3u, tc2, c4u, tc1uu.

By the definition, MCSes are exactly the complements of
MSSes, and hence finding MSSes is the same as finding
MCSes. Both these concepts are used in the literature, since in
some situations, it is more suitable to talk about corrections,
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and in other situations about maximal satisfiability. In the rest
of the paper, we will stick just to the notion of MSSes and
focus on the following problem:

Problem 1. Given an unsatisfiable CNF formula F , identify
the set MSSF of all MSSes of F .

When searching for MSSes of a given formula N , it is often
possible to reduce the search-space via the concepts of autark
variables and lean kernel. A set A Ď VarspNq is an autark set
for N iff there exists a valuation of A such that every clause of
N that uses a variable from A is satisfied by the valuation [42].
Note that a union of two autark sets is also an autark set, and
hence there exists a unique maximum autark set of N [31],
[32]. The lean kernel of N is the set of all clauses of N that
do not contain any variable from the maximum autark set. Let
L be the lean kernel of N . It is well-known that the set NzL
is a subset of every MSS of N (see, e.g., [14], [31], [32]).
Furthermore, the following observation holds1:

Observation 1. Let N be a formula and L its lean kernel.
Then MSSN “ tpNzLq YM |M P MSSLu.

Proof. Let A be the autarky set that corresponds to L, and let
π be a valuation of A that satisfies NzL.
Ě: Given M P MSSL, we show that pNzLq YM P MSSN .

First, note that pNzLqYM is satisfiable: since AXVarspMq “
H, we can combine π with a model π1 of M to get a model
of pNzLq YM . Second, by contradiction, assume that there
is a clause c P LzM such that pNzLqYM Ytcu has a model
φ (i.e., pNzLq YM R MSSN ). However, such φ is necessarily
also a model of M Y tcu which contradicts that M P MSSL.
Ď: Given M 1 P MSSN , we show that M “ M 1zpNzLq P

MSSL. Since M 1 Ě M and M 1 is satisfiable, then M is also
satisfiable. Now, by contradiction, assume that M R MSSL,
i.e., there exists c P LzM such that M Y tcu is satisfiable
with a model φ. However, since VarspM Y tcuq X A “ H,
we can combine φ with π to get a model of M 1 Y tcu which
contradicts that M 1 P MSSN .

In other words, instead of searching for MSSes of the whole
N , we can just search for MSSes of the lean kernel of N . If
the lean kernel is relatively small, then working just with the
kernel can bring a significant runtime and memory improve-
ment.2 There have been proposed several efficient algorithms
for finding maximum autarky sets and the corresponding lean
kernels (see, e.g., [33], [40]).

III. RELATED WORK

The problem of MSS (MCS) enumeration was extensively
studied in the past decades and many various techniques for
the complete enumeration were proposed, e.g., [5], [11], [22],

1We believe that this observation is also well-known in the community,
however, we did not find any work that explicitly formulates and proves it.

2Note that we have seen many industrial benchmarks where the lean kernel
is indeed relatively small. However, there are also many industrial benchmarks
where the lean kernel is the whole formula; in such cases, the extraction of
the lean kernel is not useful.

[35], [36], [39], [44], [46]–[48], [51]. Below, we just briefly
describe the work-flow of contemporary approaches (for a
more detailed overview, please refer to [8]).

Contemporary MSS enumeration approaches gradually ex-
plore the power-set of F ; explored subsets are those whose
satisfiability is already determined by the algorithm, and
unexplored are the other ones. When finding each subsequent
MSS M , an MSS enumeration algorithm needs to ensure two
things: 1) that M is so far unexplored, and 2) that M is indeed
an MSS. Both these tasks are usually carried out via several
calls to a SAT solver, and these SAT solver queries are the
most time-consuming part of the computation. Despite the
fact that extracting just a single MSS is in FPNP

rlogs [29]
(i.e., requiring log |F | calls to a SAT solver), contemporary
MSS enumerators usually need to perform just around 1-5
SAT solver calls per MSS (see [11]). Yet, in cases where the
number of MSSes is relatively large (or even exponential), the
overall number of SAT solver calls is still too high, which
makes the complete enumeration practically intractable.

Alternatively, one can identify all MCSes (MSSes) by
exploiting the so-called minimal hitting set duality [17], [49]
between MCSes and MUSes. The duality states that every
M 1 P MCSF is a minimal hitting set of MUSF . Hence, one can
first identify the set MUSF via an MUS enumeration approach
(e.g., [3]–[5], [9], [10], [12], [18], [24], [25], [35], [37], [44],
[46], [51]), and then compute the minimal hitting sets of
MUSF to get all MCSes of F . However, due to potentially
exponentially many MUSes w.r.t. |F |, the complete MUS
enumeration is also often practically intractable.

Recently, we have initiated a study [14] on the problem of
counting the number |MSSF | of MSSes of a given formula F .
In particular, we proposed the first MSS counting technique
that does not rely on a complete explicit MSS enumeration.
Briefly, given a formula F , we defined two Boolean formulas
W and R such that |MSSF | “ MW ´MR, where MW and MR

are the number of models of the two formulas, respectively.
Therefore, we were able to determine the MSS count via two
calls to a model counting tool. Crucially, contemporary model
counters often need to explicitly identify just a fraction of the
models, i.e., the model-counter somehow decomposes the task
of identifying/counting MSSes. However, this decomposition
is performed on the level of the model counting, whereas in
this work, we propose a decomposition scheme that works
natively on the structure of MSSes.

Finally, let us note that there were proposed several single
MSS extractors, e.g. [2], [20], [23], [41], that are often used
as subroutines of contemporary MSS enumerators. Also, there
have been proposed several caching techniques, e.g. [47], [48],
that can be used to speed up MSS enumerators.

IV. DECOMPOSITION OF MSSES

In this section, we provide several observations and propose
several techniques that can be used to decompose the MSS
enumeration problem into multiple easier sub-problems. Sub-
sequently, in Section V, we utilize these techniques to build
an efficient MSS enumeration algorithm.
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Definition 4 (Decomposition Graph). Given a formula N , the
decomposition graph of N , denoted GpNq, is an undirected
graph with:
‚ vertices N (a vertex per clause),
‚ and edges E Ď ttc1, c2u|c1, c2 P Nu such that tc1, c2u P
E iff there exists l P c1 with  l P c2.

Definition 5 (Decomposition). Given a formula N , the de-
composition of N , denoted DpNq, is the set of connected
components of GpNq (i.e., c1, c2 P N belong to the same
component iff there exists a path between c1 and c2 in GpNq).

Our crucial observation here is that if |DpNq| ą 1, then
the problem of finding MSSes of N can be solved as follows.
First, we identify the MSSes of the individual components
in DpNq. Second, we compose the MSSes of the individual
components via a compositional operator \ into MSSes of the
whole N . The compositional operator and our compositional
observation is formalized as follows.

Definition 6 (\). Let Ω “ tM1, . . . ,Mpu be a collection
of sets of formulas. By \pΩq, we denote the set of formulas
\pΩq “ tM1 Y ¨ ¨ ¨ YMp |M1 PM1 ^ ¨ ¨ ¨ ^Mp PMpu.

Proposition 1. Given a formula N , it holds that MSSN “

\ptMSSC |C P DpNquq.

Proof. Let DpNq “ tC1, . . . , Cpu and assume a set M “

M1 Y ¨ ¨ ¨ YMp such that M1 P MSSC1 ^ ¨ ¨ ¨ ^Mp P MSSCp .
Ě: Assuming M P \ptMSSC |C P DpNquq, we show M P

MSSN . Let π1, . . . , πp be models of M1, . . . ,Mp, respectively.
W.l.o.g, assume that for every 1 ď k ď p and every literal l P
LitspMkq such that  l R LitspMkq, it holds that πk satisfies
l. By Definition 4, there are no two distinct Mi, Mj with
clauses ci PMi, cj PMj such that there exists a literal l P ci
with  l P cj . Consequently, for every two πi and πj it holds
that they agree on common variables. Hence, we can compose
π1, . . . , πp to form a model of M . To see that M is an MSS
of N , assume by contradiction a clause c P NzM such that
M Y tcu is satisfiable. However, this means that there exists
1 ď k ď p such that c P Ck and MkYtcu is satisfiable, which
contradicts that Mk is an MSS of Ck.
Ď: Assuming M P MSSN , we show M P \ptMSSC |C P

DpNquq. Since M is satisfiable, then all individual
M1, . . . ,Mp are also satisfiable. Now, by contradiction, as-
sume an Mi that is not an MSS of Ci, i.e., there exists
a clause c P CizMi such that Mi Y tcu has a model
πi. Furthermore, let π1, . . . , πi´1, πi`1, . . . πp be models of
M1, . . . ,Mi´1,Mi`1, . . .Mp. W.l.o.g, assume that for every
1 ď k ď p and every literal l P LitspCkq such that
 l R LitspCkq, it holds that πk satisfies l. Same as in Ě:
above, we can compose π1, . . . , πp to form a model of MYtcu
which contradicts that M is an MSS of N .

Example 2. Let N “ tc1 “ tx1u, c2 “ t x1u, c3 “ tx2u,
c4 “ t x2u, c5 “ t x1, x2u, c6 “ ty1u, c7 “ t y1u, c8 “
ty2u, c9 “ t y1, y2uu. Here, DpNq “ tC1, C2u, where
C1 “ tc1, c2, c3, c4, c5u and C2 “ tc6, c7, c8, c9u. MSSC1 “

ttc2, c3, c5u, tc2, c4, c5u, tc1, c4, c5u, tc1, c3uu and MSSC2
“

ttc7, c8, c9u, tc6, c8u, tc6, c9uu. Thus, the whole N has 12
MSSes.

As witnessed in Example 2, due to Proposition 1, we
can substantially reduce the number of MSSes that need
to be explicitly identified to obtain the whole set MSSN .
Theoretically, it might be even the case that we need to
explicitly identify just logarithmically many MSSes w.r.t.
|MSSN | (assume that N contains log2 |MSSN | components with
2 MSSes per component). However, from the practical point
of view, how often is it the case that we can actually achieve
such a reduction? And, moreover, what if |DpNq| “ 1, i.e.,
when Proposition 1 cannot be applied? Can we still do some
decomposition when |DpNq| “ 1? We provide an affirmative
answer to this question by finding decomposition cuts for N .

Definition 7 (decomposition cut). Given a formula N such
that |DpNq| “ 1, a set K Ĺ N is a decomposition cut for N
iff |DpNzKq| ě 2.

Note that decomposition cuts for a formula N correspond
to graph cuts in the decomposition graph GpNq. Our crucial
observation about decomposition cuts is stated in Proposition 2
and Corollary 1.

Proposition 2. Let N be a formula and K its subset. Then
MSSN “ MSSKN Y tM P MSSNzK | @M

1 P MSSKN .M ĆM 1u.

Proof. Let us by MSSKN denote the set of all MSSes of N that
do not contain any clause from K. Clearly, MSSM “ MSSKN Y

MSSKN . To prove Proposition 2, we show that MSSKN “ tM P

MSSNzK | @M
1 P MSSKN .M ĆM 1u.

Ď: Assume M P MSSKN , hence for all c P pNzMq the
set M Y tcu is unsatisfiable, and hence M P MSSpNzKq.
Furthermore, since M is an MSS of N , there cannot exist
any M 1 P MSSKN with M ĹM 1.
Ě: Given M P MSSNzK such that @M 1 P MSSKN .M Ć M 1,

we show M P MSSKN . By contradiction, assume that M R

MSSKN , i.e., there exists c P NzM such that M Y tcu is
satisfiable. Since M P MSSNzK , then c P K, however, that
means that there exists M 1 P MSSKN such that M 1 ĚM Ytcu.

Corollary 1. Let N be a formula and K Ĺ N a decomposition
cut for N . Then MSSN “ MSSKN Y tM P \ptMSSC |C P

DpNzKquq | @M 1 P MSSKN .M ĆM 1u.

Proof. A direct consequence of Propositions 1 and 2.

Finally, let us note that graph structures similar to the de-
composition graph have been already used in several MUS and
MSS related studies (see e.g. the work on model rotation [54]
or MUS counting [13], [15]).

V. DECOMPOSITION-BASED MSS ENUMERATION

In this section, we present a novel MSS enumeration al-
gorithm that is based on the MSS decomposition observations
introduced in the previous section. Moreover, we exploit the
concept of the lean kernel which was introduced in Section II.
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A. Main Procedure

The main procedure of our algorithm is shown in Algo-
rithm 1. The input is a formula F and the output is the set
MSSF of all MSSes F . The computation starts by calling a
procedure getKernelpF q that identifies the lean kernel L of
F . Based on Observation 1, we can now restrict ourselves
just to searching for MSSes of L and then enlarge the MSSes
of L to MSSes of the whole F . To find MSSes of L,
we first use a procedure getComponentspLq that determines
the decomposition DpLq of L. Subsequently, we iteratively
identify all MSSes of the individual components. In particular,
each component N P DpLq is first checked for satisfiability
via a SAT solver (denoted isSATpNq). If N is satisfiable, then
N is the only MSS of N . Otherwise, we use the procedure
processComponentpNq to identify all MSSes of N . We store
the sets of MSSes of individual components into an auxiliary
set LMSSparts . After processing all the components, we
exploit Proposition 1 and build the MSSes MSSL of L by
composing the MSSes of the individual components (stored
in LMSSparts). Finally, based on Observation 1, we form the
set MSSF of all MSSes of F by adding the complement F zL
of the lean kernel L to the individual MSSes of L.

To implement the procedure getKernelpF q that identifies a
lean kernel of a given formula F , we employ an approach pro-
posed in [40]. To implement the procedure getComponentspLq
that finds the decomposition DpLq of L, we build the decom-
position graph GpLq and identify its connected components
(any graph algorithm for finding connected components can be
used). Finally, the procedure processComponentpNq is more
involved and it is described in the following subsection.

B. Processing a Component

The procedure processComponentpNq (Algorithm 2) starts
by computing the lean kernel I of N . Then, we identify
a decomposition cut K for I via a procedure findCutpIq.
Subsequently, following Corollary 1, we identify all MSSes
of I .

In particular, first, we employ an existing MSS enumeration
algorithm, denoted getMSSespI,Kq, to identify the set MSSKI
of all MSSes of I that contain at least a single clause from
K. Subsequently, we use the procedure getComponentspIzKq
to obtain the decomposition DpIzKq of IzK. Then, we
iteratively identify all MSSes of individual components P P

DpIzKq and store the sets of the MSSes into an auxiliary set
IKMSSparts . Once we process all the components, we can
form the MSSes of IzK as \pIKMSSpartsq (Proposition 1).
Consequently, following Corollary 1, we can obtain MSSI by
combining MSSKI and \pIKMSSpartsq (line 8). Finally, to
obtain the MSSes of the input set N , we enlarge individual
MSSes from MSSI by the set NzI (Observation 1).

The procedure findCutpIq is described in the following
subsection. To conclude this subsection, we explain how to
implement the procedure getMSSespA,Bq that identifies all
MSS of a formula A that contain at least a single clause from a
set B. When A “ B (i.e., we look for all MSSes of A (line 7)),

we can implement getMSSespA,Bq by an arbitrary existing
MSS enumeration algorithm. In the other case, when B Ĺ A,
the situation is more complicated. We are not aware of any
existing MSS enumeration tool that would directly allow the
user to specify sets A and B and then identify the MSSes of
A that contain at least a single clause from B. However, there
exist several MSS enumeration algorithms, e.g., [11], [39], that
allow the user to specify a subset B1 Ĺ A of hard clauses and
then identify all MSSes of A that contain all clauses in B1.
We observe that we can reduce the former task to the latter:

Proposition 3. Let A and B be formulas such that B Ĺ A.
Furthermore, let A1 “ A Y tcBu where cB “

Ť

bPB b. Then
MSSBA “ tMztcBu |M P MSS

tcBu
A1 u.

Proof. Ď: If MztcBu P MSSBA , then there exists a clause c P
M X B, and since MztcBu is satisfiable and c Ď cB , then
also M is satisfiable. Now, by contradiction, assume that M
is not an MSS of MSSA, i.e., there exists d P AzM such that
M Y tdu is satisfiable, hence pM Y tduqztcBu is satisfiable
(which contradicts that MztcBu P MSSBA).
Ě: If M P MSS

tcBu
A1 , then there necessarily exists a clause

c Ď cB such that c P B X M . Furthermore, since M is
satisfiable, then MztcBu is also satisfiable. Now, by contradic-
tion, assume that MztcBu R MSSBA , i.e., there exists a clause
d P AzpMztcBuq such that pMztcBuq Y tdu has a model π.
Since c Ď cB , then π also satisfies M Ytdu which contradicts
that M P MSS

tcBu
A1 .

Informally, the task of finding MSSes of A that contain at
least a single clause from B can be reduced to the task of
finding MSSes of A1 that contain the hard clause cB . Namely,
in our implementation, we employ the contemporary MSS
enumeration tool RIME [11] to carry out getMSSespA,Bq.

Finally, let us note that instead of using an external MSS
enumerator to implement getMSSespA,Bq, we could possibly
make a recursive call of processComponentp. . .q (with some
minor modifications) to get the MSSes. That is, we could
recursively decompose the input formula into smaller and
smaller parts. The reason why we do not do that is explained
later in Observation 2. Briefly, every usable cut requires
existence of two disjoint MUSes in the formula, and based
on our empirical experience, industrial benchmarks usually do
not contain many disjoint MUSes.

C. Finding a Suitable Decomposition Cut

Recall that finding a decomposition cut K for I with
|DpIq| “ 1 equals to finding a graph cut in the decomposition
graph GpIq. Hence, we could use any existing algorithm for
finding cuts in a graph to find K. However, here we need to
find a suitable decomposition cut. In the following, we will
first describe three properties of a suitable decomposition cut:
Minimality, Balance, and Necessity. Subsequently, we describe
how to find a decomposition cut with such properties.

For the ease of the presentation, assume that we identify a
decomposition cut K for I such that |DpIzKq| “ 2, and let us
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Algorithm 1: DecExactpF q

1 LÐ getKernelpF q
2 DpLq Ð getComponentspLq
3 LMSSparts ÐH

4 for N P DpLq do
5 if isSATpNq then
6 LMSSparts Ð LMSSparts Y ttNuu
7 else
8 LMSSparts Ð

LMSSparts Y tprocessComponentpNqu

9 MSSL Ð \pLMSSpartsq
10 return tpF zLq YM |M P MSSLu

Algorithm 2: processComponentpNq

1 I Ð getKernelpNq
2 K Ð findCutpIq
3 MSSKI Ð getMSSespI,Kq
4 DpIzKq Ð getComponentspIzKq
5 IKMSSparts ÐH

6 for P P DpIzKq do
7 IKMSSparts Ð IKMSSparts YtgetMSSespP, P qu

8 MSSI Ð MSSKI Y tM P \pIKMSSpartsq | @M 1 P

MSSKI .M ĆM 1u

9 return tpNzIq YM |M P MSSIu

by C1 and C2 denote the two components of DpIzKq. Hence,
in Algorithm 2, it holds that IKMSSparts “ tMSSC1

, MSSC2
u.

Minimality Recall that in Algorithm 2, line 8, we build
the set MSSI as MSSKI Y MSSKI , where MSSKI “ tM P

\ptMSSC1 , MSSC2uq | @M
1 P MSSKI .M Ć M 1u. Note that

whereas the set MSSKI is computed via an external explicit
MSS enumerator, i.e., relatively expensively, the set MSSKI
is computed via the decomposition, i.e., relatively cheaply.
Consequently, we should attempt to find a decomposition cut
K such that |MSSKI | is relatively small (compared to |MSSKI |).
Now, observe that since MSSKI contains the MSSes of I that
include at least a single clause from K, it holds that the smaller
|K| is, the smaller is the maximum possible cardinality of
MSSKI . Consequently, we should minimize |K|.

Balance By Proposition 1, |\ptMSSC1
, MSSC2

uq| “ |MSSC1
|ˆ

|MSSC2
|. Observe that to maximize |\ptMSSC1

, MSSC2
uq| while

minimizing the number |MSSC1
| ` |MSSC2

| of MSSes that are
needed to build \ptMSSC1 , MSSC2uq, we should ideally find
a decomposition cut K such that |MSSC1 | and |MSSC2 | are
roughly equal. However, since we do not know in advance
what are the MSSes of I , we cannot (cheaply) find a decom-
position cut that balances |MSSC1

| and |MSSC2
|. Instead, we

will just try to find a decomposition cut such that |C1| and
|C2| are roughly equal (and thus the maximal possible number
of MSSes in C1 and C2 is roughly equal).

Necessity Note in order to ensure that |\ptMSSC1 , MSSC2uq| ą

|MSSC1 | ` |MSSC2 |, it has to hold that |MSSC1 | ą 1 and
|MSSC2

| ą 1. Furthermore, observe that:

Observation 2. Given a formula X , it holds that |MSSX | ą 1
iff X is unsatisfiable.

Therefore, for a suitable decomposition cut K, it should
hold that both the components C1 and C2 are unsatisfiable.
All the above three conditions can be straightforwardly gen-
eralized for a cut K that yields more than two components.

To find a decomposition cut K with the above three proper-
ties, we build a weighted partial MaxSAT (WPM) [34] instance
and solve it with a MaxSAT solver. In WPM, we are given a
tuple pH, S, w : SÑ N`q, where H is a set of hard clauses, S
is a set of soft clauses, and w is a weight function that assigns
to every soft clause a positive weight. A solution of the WPM
is a valuation π of VarspHY Sq such that π satisfies all hard
clauses and maximizes the sum of the weights of satisfied soft
clauses.

In our case, we build H Y S using two sets of Boolean
variables: P “ tp1, . . . , p|I|u and Q “ tq1, . . . , q|I|u. Note
that every valuation π of P Y Q corresponds to the subsets
πP,I and πQ,I of I defined as πP,I “ tci P I |πppiq “ 1u
and πQ,I “ tci P I |πpqiq “ 1u. Furthermore, we write πK
to denote the set IzpπP,I YπQ,Iq. We define a WPM instance
pH, S, w : S Ñ N`q in such a way that for every one of its
solutions π it holds that: 1) πK is a decomposition cut for
I , and 2) the clauses in πP,I and πQ,I are disconnected in
GpIzπKq, i.e., they witness that πK is a decomposition cut for
I . To ease the presentation, we express H and S below as plain
propositional formulas using the standard Boolean connectives
of conjunction p^q, disjunction (_) and implication (Ñ). One
can use the Tseitin transformation to convert the formulas to
sets of clauses.

The formula (hard clauses) H is divided into three sub-
formulas, H “ cut ^ unsat ^ minimal. The formula cut

(Equation 1) expresses that πK is a decomposition cut, and
encodes this property via two sub-formulas: disj and discn.
The formula disj expresses that πP,I X πQ,I “ H, whereas
discn encodes that there are no two clauses ci P πP,I and
cj P πQ,I such that there exists a literal l P ci with  l P cj
(i.e. that ci and cj are connected in GpπKq). Consequently,
the clauses from πP,I and πQ,I do not belong to a same
component of GpIzπKq, and hence, by Definition 7, πK is
a decomposition cut for I . Note that cut does not enforce
that |DpIzπKq| “ 2, i.e., πQ,I and/or πP,I can be fragmented
into multiple components in DpIzπKq.

cut “ disj^ discn, where

disj “ p
ľ

ciPI

 pi _ qiq, and

discn “
ľ

ciPI

`

ľ

lPci

`

ľ

cjPtcjPI |  lPcju

 pi _ qj
˘˘

(1)

The formula unsat (Equation 2) attempts to encode that
both πP,I and πQ,I are unsatisfiable, i.e., to fulfil the Necessity
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condition. To ensure this property, we first attempt to identify
a pair of disjoint MUSes of I , denoted by M1 and M2.
Equation 2 expresses that πP,I Ě M1 and πQ,I Ě M2, and
hence πP,I and πQ,I are unsatisfiable. To find M1 and M2,
we enumerate a sequence X1, X2, ... of MUSes of I using an
MUS enumerator, and for each MUS Xz we check whether
IzXz is unsatisfiable. If there is such an MUS Xz , we use
Xz as M1, and we shrink IzXz to the MUS M2 via a single
MUS extractor. We enumerate only a subset of MUSes of I
(limited via a user-definable time limit), and hence, we might
fail to identify disjoint MUSes even if there are some. Also,
it might be the case that I does not contain disjoint MUSes.
In such cases, we set unsat to 1 (True), i.e, we do not ensure
satisfaction of the Necessity condition.

unsat “ p
ľ

ciPM1

piq ^ p
ľ

ciPM2

qiq (2)

The formula minimal (Equation 3) targets the Minimality
condition. We express that for every c P πK the set πKztcu
is not a decomposition cut for I . Note that the minimality is
the minimality in the subset inclusion sense, and not in the
cardinality sense. The formula states that every clause c P πK
is connected (in GpIzπKq) to a clause in πP,I and to a clause
in πQ,I . Consequently, adding c to πP,I (πQ,I ), i.e., flipping
the assignment πppiq (πpqiq) to 1, would violate the formula
discn.

minimal “
ľ

ciPI

p pi ^ qiq Ñ

`

p
ł

lPci

p
ł

cjPtcjPI |  lu

piqq ^ p
ł

lPci

p
ł

cjPtcjPI |  lu

qiqq
˘

(3)

Finally, the soft formula (clauses) S “ S1^S2 is divided into
two sub-formulas. S1 (Equation 4) expresses that every c P I
belongs either to πP,I or to πQ,I , i.e., that πK is empty. The
weight assigned to the clauses of S1 is 3 ¨ |I|, which ensures
that every solution π of the WPM minimizes |πK |. Hence, S1
further strengthens the Minimality condition. S2 (Equation 5)
attempts to fulfil the Balance condition. In particular, for every
ci P I , we add two soft clauses, pi and qi, and with an equal
probability (0.5) we randomly set the weights wppiq “ 1 and
wpqiq “ 2 or vice versa. Intuitively, the formula disj enforces
that at most one of pi and qi holds, and the weights for S2
attempt to randomly push ci either towards πP,I or πQ,I .

S1 “
ľ

ciPI

ppi _ qiq (4)

S2 “ p
ľ

ciPI

piq ^ p
ľ

ciPI

qiq (5)

Finally, let us note even if by solving the WPM we obtain
a decomposition cut K such that | \ ptMSSC |C P DpIzKquq|
is very large, there is no guarantee that |tM P \ptMSSC |C P
DpIzKquq | @M 1 P MSSKI .M Ć M 1u| ą 0, i.e., the decom-
position might not be helpful. Therefore, the three conditions

on finding a suitable decomposition cut should be seen as
heuristics.

D. Towards Partial MSS Enumeration

Few words are in order concerning the practical tractability
of running Algorithm 2. As discussed above, the lean kernel
I of the input formula N can possibly contain exponentially
many MSSes. Hence the MSS enumeration might be beyond
the reach of contemporary MSS enumerators (which usually
perform around 1-5 SAT solver calls per MSS [8]). To cope
with this intractability, we decompose I into several compo-
nents, and we hope that the MSSes count for the individual
components will be relatively small and thus tractable for a
contemporary MSS enumerator. However, note that if there
is a component which is still intractable for a contemporary
enumerator (calls of getMSSesp. . .q, lines 3 and 7), then
Algorithm 2 does not terminate in a reasonable time.

Here, we propose a slight modification of Algorithm 2
that deals with such an intractability. When running
getMSSespA,Bq, we instruct the underlying MSS enumerator
to return at most k MSSes of A, where k can be specified by
the user of our algorithm. Consequently, if k is reasonably
small, the calls of getMSSespA,Bq become tractable and
Algorithm 2 terminates. After such a modification, the sets
MSSKI and IKMSSparts might be incomplete, and thus the set
MSSI formed on line 8 can be also incomplete (and hence also
the overall set of MSSes returned by Algorithm 1). However,
besides the incompleteness, the set MSSI might not be sound,
i.e., it can contain elements that are not MSSes of I .

In particular, we add to MSSI every M P \pIKMSSpartsq
such that @M 1 P MSSKI .M Ć M 1. Provided that MSSKI is
complete, passing the check @M 1 P MSSKI .M Ć M 1 ensures
that M is an MSS of I (Proposition 2). However, if MSSKI is
incomplete, then 1) every M that does not pass the check is not
an MSS of I , and 2) every M that does pass the check can be
an MSS of I . Thus, in the case when MSSKI is incomplete, we
first check for every M whether it satisfies @M 1 P MSSKI .M Ć

M 1, and if yes, then we also verify that M is an MSS of
I using a SAT solver. Such a verification can be performed
using a single call of a SAT solver [14] (we check whether
M ^ p

Ž

cPIzM cq is satisfiable).

VI. EXPERIMENTAL EVALUATION

We have implemented our novel approach for MSS/MCS
enumeration in a python-based tool using the MSS enumerator
RIME [11] to implement the procedure getMSSes, the library
PySAT [27] for maintaining CNF formulas, Minisat [19]
(accessed via PySAT) as a SAT solver, and UWrMaxSat [45]
as a MaxSAT solver. The tool is available at:

https://github.com/jar-ben/MSSDecomposition
Here we provide results of our experimental evaluation.

We write DecExact to denote the complete MSS enumeration
approach as described in Algorithms 1 and 2, and DecApprox
to denote the partial MSS enumeration version as described
in Section V-D. For DecApprox, we set the parameter k to
100000, i.e., every call of getMSSes identifies at most 100000
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MSSes. Moreover, we evaluate three contemporary MSS/MCS
enumeration algorithms: MARCO3 [36], FLINT4 [44], and
RIME5 [11]. In all cases, we used the original implementations
of the algorithms with their best (default) settings.

As benchmarks, we used a collection of 1491 Boolean CNF
formulas that were used in several recent MSS or MUS related
studies. Out of the 1491 formulas, 1200 instances6 are ran-
domly generated formulas that were first used in [38], and the
remaining 291 benchmarks were taken from the MUS track of
the SAT Competition 20217. The former benchmarks contain
from 100 to 1000 clauses, use from 50 to 996 variables, and
have from 2 to at least 1022 MSSes (the highest MSS count
revealed in our evaluation). The latter benchmarks contain
from 70 to 16 million clauses, use from 26 to 4.4 million
variables, and have from 2 to at least 108 MSSes. We run
all experiments on an AMD EPYC 7371 16-Core Processor,
1 TB memory machine running Debian Linux. We used 20
GB memory limit and 3600 seconds (1 hour) time limit per
benchmark.

A. Research Questions

We focus on answering the following research questions.
RQ1: Our first research question simply asks: Can our novel

MSS enumeration technique complete the enumeration for
more benchmarks than the contemporary approaches?

RQ2: As discussed above, the proposed MSS decomposition
technique can, in a theory, exponentially reduce the num-
ber of MSSes that need to be explicitly identified. Hence,
our novel approach might be able to handle benchmarks
with a very large number of MSSes. Our second RQ is
thus: what is the scalability of the evaluated algorithms
w.r.t. the number of MSSes in the individual benchmarks?

RQ3: Finally, we also examine the manifestation of the MSS
decomposition in our approach. Our third RQ is: what
is the ratio between the number of explicitly identified
MSSes and the total number of identified MSSes for the
individual benchmarks.

B. RQ1: Number of Solved Benchmarks

In Figure 2, we show the number of benchmarks for which
individual algorithms finished their computation (within the
time limit). In particular, a point with coordinate rx, ys means
that there are x benchmarks that were finished by the algorithm
in at most y seconds. FLINT, RIME, and MARCO were able
to identify all MSSes only for 364, 376, and 415 bench-
marks, respectively. On the other hand, DecExact identified all
MSSes for 788 benchmarks, i.e., solving two times as many
benchmarks as its competitors. Finally, DecApprox finished the
computation for 1240 benchmarks, however, in many cases, it
identified only a portion of all MSSes (due to the limit of

3https://sun.iwu.edu/„mliffito/marco/
4The implementation of FLINT was kindly provided to us by its author,

Nina Narodytska.
5https://github.com/jar-ben/rime
6https://github.com/luojie-sklsde/MUS Random Benchmarks
7http://www.satcompetition.org/
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100000 MSS per getMSSes call). In particular, DecApprox
identified all MSSes for 742 benchmarks, and at least some
MSSes for 498 benchmarks.

We observed that the tractability of the benchmarks highly
correlates with their size (number of clauses). In particular,
there are only 16 benchmarks that contain more than 10000
clauses and were solved by at least one of the tools (excluding
the incomplete tool DecApprox). Moreover, FLINT, RIME,
and MARCO scale better w.r.t. this criterion than DecExact
since there are 10 benchmarks that contain more than 500000
clauses (but only up to 20000 MSSes) and were solved by
these tools. On the other hand, the largest benchmark solved
by DecExact contains only 13236 clauses. We further discuss
this bottleneck of our approach in Section VII.

C. RQ2: Scalability W.R.T. the MSS Count

In Figure 3, we compare the scalability of the evaluated
algorithms w.r.t. the number of MSSes in the input formulas. In
particular, a point with coordinates rx, ys denotes that there are
x benchmarks where the corresponding algorithm identified
fewer than y MSSes. You can see that MARCO and RIME
were able to identify at most only around 106 MSSes. FLINT
performed slightly better w.r.t. this criterion since for some
benchmarks, it identified around 108 MSSes. On contrary, both
DecExact and DecApprox were able to identify up to 1022

MSSes in a benchmark. This witnesses that the use our MSS
decomposition techniques allow us to substantially improve
the scalability of existing approaches.
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D. RQ3: Number of Explicitly Identified MSSes

Finally, the third research question concerns just our two
algorithms, DecExact and DecApprox. Given a formula F , we
examine the ratio tc

ex , where tc is the total number of identified
MSSes of F (i.e., |MSSF | and an under-approximation of
|MSSF | for DecExact and DecApprox, respectively) and ex is
the number of MSSes identified via the calls of getMSSes. A
point with coordinates rx, ys in Figure 4 denotes that for the
corresponding algorithm, there are x benchmarks where the
ratio was at least y. Note that we show the ratio only for the
788 and 1240 benchmarks where DecExact and DecApprox
finished the computation.

Recall that getMSSes is implemented via an explicit MSS
enumerator, i.e., it identifies individual MSSes one by one
using sequence of SAT solver calls, i.e., identification of these
MSSes is the most expensive part of our algorithm(s). On the
other hand, the tc MSSes are identified extremely cheaply
since they are built by just composing the MSSes identified
via getMSSes. Therefore, the ratio tc

ex actually represents the
(maximum possible) speed-up of the MSS enumeration when
using DecExact and DecApprox compared to using the explicit
enumerators FLINT, MARCO, and RIME.

VII. LIMITATIONS AND PRACTICAL APPLICABILITY

Even though our novel approaches, DecExact and
DecApprox, solved in our evaluation substantially more bench-
marks than contemporary MSS enumerators, the practical
efficiency of our approaches remains to be unclear. Here, we
discuss two main bottlenecks of our approaches and propose
ways how to deal with them.

The first bottleneck of our MSS decomposition technique
is its reliance on a MaxSAT solver (which is used to find a
suitable cut). The size of the formula cut (Equation 1) depends
on the number |F | of clauses in the input formula F . Hence,
for larger input formulas F , solving the MaxSAT problem for
cut easily becomes practically intractable. A possible way
how to deal with this limitation is to use just an approximate
MaxSAT solver. In particular, recall that our approach for
finding a suitable cut via the formula cut is just a heuristic,
i.e., there is no guarantee that it will indeed find a suitable
cut. Using an approximate MaxSAT solver instead of an exact
one might increase the scalability of our approach w.r.t. |F |.

The second bottleneck of our MSS decomposition technique
was stated in Observation 2. In particular, recall there exists

a usable cut for a given formula F only if F contains a
disjoint pair of MUSes. Based on our empirical experience,
there are many applications where the input formula does
not contain a disjoint pair of MUSes and hence our approach
cannot be applied. Yet, we have also witnessed many industrial
benchmarks where disjoint MUSes naturally appear (for in-
stance, there is a SAT encoding of the graph coloring problem
where disjoint MUSes correspond to disjoint non-colorable
subgraphs). Hence, one might initially check whether the input
formula F contains disjoint MUSes and employ our approach
only if it is the case.

VIII. CONCLUSION AND FUTURE WORK

In this paper, we focused on the problem of enumeration
of Maximal Satisfiable Subsets of a given CNF formula F .
Despite the fact that the enumeration problem was extensively
studied in the past decades, contemporary enumerators are still
often unable to finish the computation within a reasonable time
limit. The problem is that there can be up to exponentially
many MSSes w.r.t. |F | and contemporary approaches usually
need to perform a sequence of SAT solver queries to obtain
individual MSSes. To combat the combinatorial explosion, we
proposed a novel MSS enumeration approach that decomposes
F into several smaller sub-formulas, identifies their MSSes,
and then compose the MSSes of the sub-formulas to form
MSSes of the whole F . Our experimental evaluation witnessed
that the decomposition in some cases allows us to identify ex-
ponentially more MSSes than other contemporary approaches.
Yet, as described in Section VII, the class of benchmarks
where our approach can be applied is limited.

We see several directions for future work. A crucial in-
gredient of our algorithm is the ability to identify a suit-
able decomposition cut K. The approach for finding K we
proposed seems to be quite good, i.e., indeed allowing for
a decomposition. However, we believe that there might be
even better approaches how to find a suitable decomposition
cut. Another direction for future work would be to improve
upon the partial MSS enumeration approach (DecApprox). In
particular, instead of limiting the number of MSSes returned
by getMSSes, one might try to either interleave or parallelize
the computation of MSSes of individual components and
compose the MSSes on-the-fly. Finally, since our approach
is applicable only to a specific class of benchmarks, it might
be worth building a portfolio approach.
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online MUS/MSS enumeration. In FSTTCS, volume 65 of LIPIcs, pages
50:1–50:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Informatik, 2016.
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