
Tunable Online MUS/MSS Enumeration

Jaroslav Bendík1, Nikola Beneš2, Ivana Černá3, and Jiří Barnat4

1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
xbendik@fi.muni.cz

2 Faculty of Informatics, Masaryk University, Brno, Czech Republic
xbenes3@fi.muni.cz

3 Faculty of Informatics, Masaryk University, Brno, Czech Republic
cerna@fi.muni.cz

4 Faculty of Informatics, Masaryk University, Brno, Czech Republic
barnat@fi.muni.cz

Abstract
In various areas of computer science, the problem of dealing with a set of constraints arises. If the
set of constraints is unsatisfiable, one may ask for a minimal description of the reason for this
unsatisifiability. Minimal unsatisfiable subsets (MUSes) and maximal satisfiable subsets (MSSes)
are two kinds of such minimal descriptions. The goal of this work is the enumeration of MUSes
and MSSes for a given constraint system. As such full enumeration may be intractable in general,
we focus on building an online algorithm, which produces MUSes/MSSes in an on-the-fly manner
as soon as they are discovered. The problem has been studied before even in its online version.
However, our algorithm uses a novel approach that is able to outperform the current state-of-the
art algorithms for online MUS/MSS enumeration. Moreover, the performance of our algorithm
can be adjusted using tunable parameters. We evaluate the algorithm on a set of benchmarks.

1998 ACM Subject Classification F.4.1 Logic and constraint programming

Keywords and phrases Minimal unsatisfiable subsets, Maximal satisfiable subsets, Unsatisfiab-
ility analysis, Infeasibility analysis

Digital Object Identifier 10.4230/LIPIcs.CVIT.2016.23

1 Introduction

In various areas of computer science, such as constraint processing, requirements analysis,
and model checking, the following problem often arises. We are given a set of constraints
and are asked whether the set of constraints is feasible, i.e. whether all the constraints are
satisfiable together. In requirements analysis, the constraints represent the requirements on
a given system, usually described as formulae of a suitable logic, and the feasibility question
is in fact the question whether all the requirements can actually be implemented at once.
In some model checking systems, such as those using the counterexample-guided abstraction
refinement (CEGAR) workflow, an infeasible constraint system may arise as a result of the
abstraction’s overapproximation. In such cases where the set of constraints is infeasible,
we might want to explore the reasons of infeasibility. There are basically two approaches
that can be used here. One is to try to extract a single piece of information explaining the
infeasibility, such as a minimal unsatisfiable subset (MUS) or dually a maximal satisfiable
subset (MSS) of the constraints. The other option is to try to enumerate all, or at least as
many as possible, of these sets. In this work, we focus on the second approach. Enumerating
multiple MUSes is sometimes desirable: in requirements analysis, this gives better insight

© Jaroslav Bendík, Nikola Beneš, Ivana Černá and Jiří Barnat;
licensed under Creative Commons License CC-BY

42nd Conference on Very Important Topics (CVIT 2016).
Editors: John Q. Open and Joan R. Acces; Article No. 23; pp. 23:1–23:13

Leibniz International Proceedings in Informatics
Schloss Dagstuhl – Leibniz-Zentrum für Informatik, Dagstuhl Publishing, Germany

http://dx.doi.org/10.4230/LIPIcs.CVIT.2016.23
http://creativecommons.org/licenses/by/3.0/
http://www.dagstuhl.de/lipics/
http://www.dagstuhl.de

23:2 Tunable Online MUS/MSS Enumeration

into the inconsistencies among requirements; in CEGAR-based model checking more MUSes
lead to a better refinement that can reduce the complexity of the whole procedure [2].

The enumeration of all MUSes or MSSes is generally intractable due to the potentially
exponential number of results. It thus makes sense to study algorithms that are able to
provide at least some of those within a given time limit. An even better option is to have
an algorithm that produces MUSes or MSSes in an on-the-fly manner as soon as they are
discovered. It is the goal of this paper to describe such an algorithm.

1.1 Related Work
The list of existing work that focuses on enumerating multiple MUSes is short as most
of the related work only deals with an extraction of a single MUS or even a non-minimal
unsatisfiable subset. For example all of [7, 17, 19] use information from a satisfiability solver
to obtain an unsatisfiable subset but they do not guarantee its minimality. Moreover, the
majority of the algorithms which enumerate all MUSes have been developed for specific
constraint domains, mainly for Boolean satisfiability problems.

Explicit Checking The first algorithm for enumerating all MUSes we are aware of
was developed by Hou [11] in the field of diagnosis and is built on explicit enumeration of
every subset of the unsatisfiable constraint system. It checks every subset for satisfiability,
starting from the complete constraint set and branching in a tree-like structure. The authors
presented some pruning rules to skip irrelevant branches and avoid unnecessary work. Further
improvements to this approach were made by Han and Lee [10] and by de la Banda et. al. [8].

CAMUS A state-of-the-art algorithm for enumerating all MUSes called CAMUS by
Liffiton and Sakallah [16] is based on the relationship between MUSes and the so-called
minimal correction sets (MCSes), which was independently pointed out by [3, 6, 14]. This
relationship states that M ⊆ C is a MUS of C if and only if it is an irreducible hitting set of
MCS(C). CAMUS works in two phases, first it computes all MCSes of the given constraint
set, and then it finds all MUSes by computing all the irreducible hitting sets of these MCSes.

A significant shortcoming of CAMUS is that the first phase can be intractable as the
number of MCSes may be exponential in the size of the instance and all MCSes must be
enumerated before any MUS can be produced. This makes CAMUS unsuitable for many
applications which require only a few MUSes but want to get them quickly. Note that
CAMUS is able to enumerate MSSes, as they are simply the complements of MCSes.

MARCO The desire to enumerate at least some MUSes even in the generally intractable
cases led to the development of two independent but nearly identical algorithms: MARCO [13]
and eMUS [18]. Both algorithms were later joined and presented in [15] under the name of
MARCO. MARCO is able to produce individual MUSes during its execution and it does
it in a relatively steady rate. To obtain each single MUS, MARCO first finds a subset U

whose satisfiability is not known yet, checks it for satisfiability and if it is unsatisfiable, it
is “shrunk” to a MUS. In the case that U is satisfiable, it is in a dual manner expanded
into an MSS. The algorithm can be supplied with any appropriate shrink and expansion
procedures; this makes MARCO applicable to any constraint satisfaction domain in general.

CAMUS and MARCO were experimentally compared in [15] and the former has shown
to be faster in enumerating all MUSes in the tractable cases. However, in the intractable
cases, MARCO was able to provide at least some MUSes while CAMUS often provided none.
One another algorithm, the Dualize and Advance (DAA) by Bailey and Stuckey [3] was also
evaluated in these experiments. DAA is also based on the relationship between MCSes and
MUSes and can produce both MUSes and MSSes during its execution; however, it has shown

J. Bendík et. al. 23:3

to be substantially slower than CAMUS in the case of complete MUSes enumeration and
also slower than MARCO in the partial enumeration.

1.2 Our Contribution
In this paper, we present our own algorithm for online enumeration of MUSes and MSSes
in general constraint satisfaction domains that is able to outperform the current state-of-
the-art MARCO algorithm. The core of the algorithm is based on a novel concept of local
MUSes/MSSes. To find these we use a binary-search-based approach. Similarly to MARCO,
the algorithm is able to directly employ arbitrary shrinking and expanding procedures.
Moreover, our algorithm contains certain parameters that govern in which cases the shrinking
and expanding procedures are to be used. We evaluate our algorithm on a variety of
benchmarks that show that the algorithm indeed outperforms MARCO.

This paper builds on our previous work [5] where we focused on finding boundary elements
in partially ordered sets represented by explicit acyclic graphs. Here we focus on the specific
case of powersets represented symbolically. Another difference is that we perform online
enumeration here.

Note that there is a constraint solving approach QuickXplain [12] which uses binary
search, however it solves a different problem. It uses a linear priority ordering on constraints
and extracts a single maximal consistent subset w.r.t. this priority.

Outline of The Paper In Section 2 we state the problem we are solving in a formal way,
defining all the necessary notions. In Section 3 we describe the algorithm in an incremental
way, starting with the basic schema of MUS/MSS computation and gradually explaining the
main ideas of our algorithm. Section 4 provides an experimental evaluation on a variety of
benchmarks, comparing our algorithm against MARCO. The paper is concluded in Section 5.

2 Preliminaries

Our goal is to deal with arbitrary constraint satisfaction systems. The input is given as
a finite set of constraints C = {c1, c2, . . . , cn} with the property that each subset of C is either
satisfiable or unsatisfiable. The definition of satisfiability may vary in different constraint
domains, we only assume that if X ⊆ C is satisfiable, then all subsets of X are also satisfiable.
The subsets of interest are defined in the following.

I Definition 1 (MSS, MUS). Let C be a finite set of constraints and let N ⊆ C. N is
a maximal satisfiable subset (MSS) of C if N is satisfiable and ∀c ∈ C \ N : N ∪ {c} is
unsatisfiable. N is a minimal unsatisfiable subset (MUS) of C if N is unsatisfiable and
∀c ∈ N : N \ {c} is satisfiable.

Note that the maximality concept used here is set maximality, not maximum cardinality as
in the MaxSAT problem. This means there can be multiple MSSes with different cardinality.
We use MUS(C) and MSS(C) to denote the set of all MUSes and MSSes of C, respectively.
The formulation of our problem is the following: Given a finite set of constraints C, enumerate
(all or at least as many as possible) members of MUS(C) and MSS(C).

To describe the ideas of our algorithm and illustrate its usage, we shall use Boolean
satisfiability constraints in the following. In the examples, each of the constraints ci is going
to be a clause (a disjunction of literals). The whole set of constraints can be then seen as
a Boolean formula in conjunctive normal form.

CVIT 2016

23:4 Tunable Online MUS/MSS Enumeration

I Example 2. We illustrate the concepts on a small example. Assume that we are given
a set C of four Boolean satisfiability constraints c1 = a, c2 = ¬a, c3 = b, and c4 = ¬a ∨ ¬b.
Clearly, the whole set is unsatisfiable as the first two constraints are negations of each other.
There are two MUSes: {c1, c2}, {c1, c3, c4} and three MSSes: {c1, c4}, {c1, c3}, {c2, c3, c4}.

The powerset of C, i.e. the set of all its subsets, forms a lattice ordered via subset inclusion
and denoted by P(C). In our algorithm we are going to deal with the so-called chains of the
powerset and deal with local MUSes and MSSes, defined as follows.

I Definition 3. Let C be a finite set of constraints. The sequence K = 〈N1, . . . Ni〉 is a chain
in P(C) if ∀j : Nj ∈ P(C) and N1 ⊂ N2 ⊂ · · · ⊂ Ni. We say that Nk is a local MUS of K if
Nk is unsatisfiable and ∀j < k : Nj is satisfiable. Similarly, we say that Nk is a local MSS
of K if Nk is satisfiable and ∀j > k : Nj is unsatisfiable.

Note that there is no local MUS if all subsets on the chain are satisfiable, and there is no
local MSS if all subsets on the chain are unsatisfiable.

3 Algorithm

In this section, we gradually present an online MUS/MSS enumeration algorithm. Consider
first a naive enumeration algorithm that would explicitly check each subset of C for satisfiab-
ility, split the subsets of C into satisfiable and unsatisfiable subsets, and choose the maximal
and minimal subsets of the two groups, respectively. The main disadvantage of this approach
is the large number of satisfiability checks. Checking a given subset of C for satisfiability
is usually an expensive task and the naive solution makes an exponential number of these
checks which makes it unusable.

Note that the problem of MUS enumeration contains the solution to the problem of
satisfiability of all subsets of C as each unsatisfiable subset of C is a superset of some MUS.
This means that every algorithm that solves the problem of MUS enumeration has to make
several satisfiability checks during its execution. These checks are usually done employing an
external satisfiability solver. Clearly, the number of such external calls corresponds with the
efficiency of the algorithm. Therefore, we want to minimise the number of calls to the solver.

3.1 Basic Schema
Recall that the elements of P(C) are partially ordered via subset inclusion and each element is
either satisfiable or unsatisfiable. The key assumption on the constraint domain, as declared
above, is that the partial ordering of subsets is preserved by the satisfiability of these subsets.
If we thus find an unsatisfiable subset Nu of C then all supersets of Nu are also unsatisfiable;
dually, if we find a satisfiable subset Ns of C then all subsets of Ns are also satisfiable.
Moreover, none of the supersets of Nu can be a MUS and none of the subsets of Ns can be
an MSS. In the following text we refer to this property as to the monotonicity of P(C) and
to the elements of P(C) as to nodes.

Our basic algorithm is described in pseudocode as Algorithm 1. The algorithm consists
of two phases. In the first phase it determines the satisfiability of all nodes and extracts
from P(C) a set of MSS candidates MSScan and a set of MUS candidates MUScan ensuring
that MSS(C) ⊆ MSScan and MUS(C) ⊆ MUScan. In the second phase it reduces MSScan
to MSS(C) and MUScan to MUS(C).

During the execution of the first phase the algorithm maintains a classification of nodes;
each node can be either unexplored or explored and some of the explored nodes can belong

J. Bendík et. al. 23:5

Algorithm 1: The basic schema of our algorithm
1 Unex ← P(C)
2 MSScan, MUScan ← ∅
3 while Unex is not empty do
4 Nodes ← some unexplored nodes
5 for each N ∈ Nodes do
6 if N is satisfiable then
7 MSScan ← MSScan ∪ {N}
8 Unex ← Unex \ Sub(N)
9 else

10 MUScan ← MUScan ∪ {N}
11 Unex ← Unex \ Sup(N)

12 extract MSSes from MSScan
13 extract MUSes from MUScan

to MSScan or to MUScan. The explored nodes are those whose satisfiability the algorithm
already knows and the unexplored nodes are the remaining ones. The algorithm stores the
unexplored nodes in the set Unex which initially contains all nodes from P(C). The first phase
is iterative; the algorithm in each iteration selects some unexplored nodes Nodes, determines
their satisfiability using an external satisfiability solver, and exploits the monotonicity of
P(C) to deduce satisfiability of some other unexplored nodes. At the end of each iteration
the algorithm updates the set Unex by removing from it the nodes whose satisfiability was
decided in this iteration. Based on its satisfiability, every node from the set Nodes is added
either into MSScan or MUScan.

In the pseudocode, we use Sup(N) to denote the set of all unexplored supersets of N

including N and Sub(N) to denote the the set of all unexplored subsets of N including N .
Clearly, the schema converges as the set of unexplored nodes decreases its size in every

iteration. The schema also ensures that after the last iteration it holds that MUS(C) ⊆
MUScan and MSS(C) ⊆ MSScan. This is directly implied by the monotonicity of P(C)
as no node whose satisfiability was deduced can be an MSS and dually no node whose
unsatisfiability was deduced can be a MUS.

In the second phase our algorithm extracts all MUSes and MSSes from MUScan and
MSScan . Both these extractions can be done by any algorithm that extracts the highest and
the lowest elements from any partially ordered set. A trivial algorithm can just test each
pair of elements for the subset inclusion and remove the undesirable elements, which can
be done in time polynomial to the number of constraints in C and the size of the sets of
candidates. We assume that this part of our algorithm is not as expensive as the rest of it,
especially when each check for a satisfiability of a set of constraints may require solving an
NP-hard problem. We therefore omit the discussion of the second phase in the following and
focus solely on the way the set Nodes is chosen in each iteration and the way the unexplored
nodes are managed.

3.2 Symbolic Representation of Nodes

Our algorithm highly depends on an efficient management of nodes. In particular it needs to
reclassify some nodes from unexplored to explored and build chains from the unexplored nodes.

CVIT 2016

23:6 Tunable Online MUS/MSS Enumeration

Probably the simplest way of managing nodes would be their explicit enumeration; however,
there are exponentially many subsets of C = {c1, · · · , cn} and their explicit enumeration is
thus intractable for large instances. We thus use a symbolic representation of nodes instead.

We exploit the well-known isomorphism between finite powersets and Boolean algebras.
That is, we encode the set of constraints C = {c1, . . . , cn} using a set of Boolean variables
X = {x1, . . . , xn}. Each subset of C (i.e. each node in our algorithm) is then represented by
a valuation of the variables of X. This allows us to represent sets of nodes using Boolean
formulae over X. We use f(Nodes) to denote the Boolean formula representing the set Nodes
in the following.

As an example, consider a set of constraints C = {c1, c2, c3} and let Nodes = {{c1},
{c1, c2}, {c1, c3}} be a set of three nodes. Using the Boolean variables representation of C,
we can encode the set Nodes using the Boolean formula f(Nodes) = x1 ∧ (¬x2 ∨ ¬x3).

The advantage of this representation is that we can efficiently perform set operations over
sets of nodes. The union of two sets of nodes NodesA, NodesB is carried out as a disjunction
and their intersection as a conjunction. To get an arbitrary node from a given set, say Unex ,
we use an external SAT solver (more details in the next subsection). Note that this means
that our algorithm employs two external solvers: One is the constraint satisfaction solver
that decides satisfiability of the nodes, one is the SAT solver that works with our Boolean
description of the constraint set and is employed to produce unexplored nodes. To clearly
distinguish between these two we shall in the following use the phrases “constraint solver”
and “SAT solver” rigorously.

3.3 Unexplored Nodes Selection
Let us henceforth denote one specific call to the constraint solver as a check. We now clarify
which nodes our algorithm chooses in each of its iterations to be checked and which nodes it
adds into the sets of candidates on MUSes and MSSes. We also extend the basic schema
which was presented as Algorithm 1. We want to minimise the ratio of performed checks to
the number of nodes in P(C). Every algorithm for solving the problem of MUSes enumeration
has to perform at least as many checks as there are MUSes, so this ratio can never be zero.
Also, it is impossible to achieve the ratio with a minimal value without knowing which
nodes are satisfiable and which are not and this information is not a part of the input of
our algorithm. Instead of minimising this overall ratio, our algorithm tends to minimise this
ratio locally in each of its iterations.

In order to select the nodes which are checked in one specific iteration, our algorithm at
first constructs an unexplored chain. An unexplored chain is a chain K = 〈N1, . . . , Nk〉 that
contains only unexplored nodes and that cannot be extended by adding another unexplored
nodes to its ends, i.e. N1 has no unexplored subset and Nk has no unexplored superset. The
monotonicity of P(C) implies that either (i) all nodes of K are satisfiable, (ii) all nodes of K

are unsatisfiable, or (iii) K has a local MSS and a local MUS, i.e. there is some j such that
∀0 ≤ i ≤ j : Ni is satisfiable and ∀k ≥ l > j : Nl is unsatisfiable. This allows us to employ
binary search to find such j performing only logarithmically many checks in the length of
the chain. Let us analyse the three possible cases:

(i) all nodes of K are satisfiable, hence our algorithm deduces that all proper subsets of Nk

are satisfiable and none of them can be an MSS, and it marks Nk as an MSS candidate;
(ii) all nodes of K are unsatisfiable, hence our algorithm deduces that all proper supersets

of N1 are unsatisfiable and none of them can be a MUS, and it marks N1 as a MUS
candidate; or

J. Bendík et. al. 23:7

Algorithm 2: The modification of the basic schema of our algorithm
2 . . .

3 while Unex is not empty do
4 K ← some unexplored chain // this line is added
5 Nodes← processChain(K) // this line is modified
6 for each N ∈ Nodes do
7 . . .

(iii) Nj is the local MSS of K and Nj+1 is its local MUS, hence our algorithm deduces that
all proper subsets of Nj are satisfiable, all proper supersets of Nj+1 are unsatisfiable, and
it marks Nj as an MSS candidate and Nj+1 as a MUS candidate.

Algorithm 2 shows the modification of the basic schema of our algorithm (see Algorithm 1)
which incorporates the above method for choosing nodes to be checked. At the beginning of
each iteration the algorithm finds an unexplored chain K which is subsequently processed by
the processChain method. This method finds the local MUS and local MSS of K (possibly
only one of those) using binary search and returns them.

To construct an unexplored chain, our algorithm first finds a pair of unexplored nodes
(N1, Nk) such that N1 ⊆ Nk and then builds a chain 〈N1, N2, . . . , Nk−1, Nk〉 by connecting
these two nodes. The intermediate nodes N2, . . . , Nk−1 are obtained by adding one by one
the constraints from Nk \N1 to the node N1. We refer to each such pair of unexplored nodes
(N1, Nk) that are the end nodes of some unexplored chain as to an unexplored couple.

In order to find an unexplored couple our algorithm asks for a member of Unex by
employing the SAT solver (by asking for a model of the formula f(Unex)). Besides the
capability of finding an arbitrary member of Unex, we require the following capability: For
a given member Np ∈ Unex , the SAT solver should be able to produce a minimal Nq ∈ Unex
such that Nq ⊆ Np, where minimal means that there is no other Nr with Nr ⊂ Nq. Similarly,
we require the SAT solver to be able to produce maximal such Nq. One of the SAT solvers that
satisfies our requirements is miniSAT [9] that allows the user to fix values of some variables
and to select a default polarity of variables at decision points during solving. To obtain a
minimal Nq which is a subset of Np, we set the default polarity of variables to False and fix
the truth assignment to the variables that have been assigned False in Np. Similarly for the
maximal case.

We now describe two approaches of obtaining unexplored couples, assuming that we
employ a SAT solver satisfying the above requirements.

Basic approach The Basic approach consists of two calls to the SAT solver. The first
call asks the SAT solver for an arbitrary minimal member of Unex. If nothing is returned
then there are no more unexplored nodes. Otherwise we obtain a node Nk which is minimal
in Unex. We then ask the SAT solver for a maximal node Nl ∈ Unex such that Nl is a
superset of Nk. The pair (Nk, Nl) is then the new unexplored couple.

Pivot based approach Supposing that the SAT solver works deterministically, a series
of calls for maximal (minimal) nodes of Unex may return nodes from some local part of
the search space that may lead to construction of unnecessarily short chains. Therefore, we
propose to first choose a pivot Np, an unexplored node which may be neither maximal nor
minimal and which should be chosen somehow randomly. As the next step this approach
asks the SAT solver for a minimal node Nk such that Nk ⊆ Np and for a maximal node

CVIT 2016

23:8 Tunable Online MUS/MSS Enumeration

Algorithm 3: processChain(C, K = 〈N1, . . . , Nk〉)
1 find local MSS Ns and MUS Nu of K using binary search
2 if u < S(|K|) then
3 Nu ← shrink(Nu)
4 yieldMUS(Nu) // Output MUS

5 if s > |K| −G(|K|) then
6 Ns ← grow(Ns)
7 yieldMSS(Ns) // Output MSS

8 return {Nu, Ns} // Note that Nu or Ns may not exist

Nl such that Np ⊆ Nl. The new unexplored couple is then (Nk, Nl). The randomness in
choosing the node Np is expected to ensure that we hit a part of Unex with large chains.

To get the pivot, we can set the SAT to assign a random polarity to variables at the
decision points during solving.

3.4 Online MUS/MSS Enumeration

The algorithm as presented until now is only able to provide MUSes and MSSes in the
second phase, after it finishes exploring all the nodes. We now describe the last piece of
our final algorithm, namely the way of producing MUSes and MSSes during the execution
of the first phase. To do so, we need to employ two procedures: The shrink procedure is
an arbitrary method that can turn an unsatisfiable node Nu into a MUS. Dually, the grow
procedure is a method that can turn a satisfiable node Ns into MSS. A simple shrink (grow)
method iteratively attempts to remove (add) constraints from Nu (Ns), checking each new
set for satisfiability and keeping any changes that leave the set unsatisfiable (satisfiable).
These simple variants serve just as illustrations, there are known efficient implementations of
both shrink and grow for specific constraint domains; as an example see MUSer2 [4] which
implements the shrink method for Boolean constraints systems.

Recall that as a result of processing a single chain K, our algorithm finds either a local
MUS Nu, or a local MSS Ns, or both of them. To get a MUS (MSS) we propose to employ
the shrink (grow) method on this local MUS (MSS). However, performing shrink (grow) on
each local MUS (MSS) can be quite expensive and can significantly slow down our algorithm.
The amount of time needed for performing one specific shrink (grow) of Nu (Ns) correlates
with the position of Nu (Ns) on K; the closer Nu (Ns) is to the start (end) of K the bigger
amount of time needed for the shrink (grow) can be expected.

Therefore, we propose to shrink (grow) only some of the local MUSes (MSSes) based on
their position on K. Let |K| be the length of K, u the index of Nu in K, and S : N → N
be an arbitrary user defined function. Our algorithm shrinks Nu into a MUS if and only
if u < S(|K|). As an example, consider S(x) = x

2 ; in such case Nu is shrunk only if it is
contained in the first half of K. Similarly, let s be the index of local MSS Ns of chain K

and G : N → N. The local MSS Ns is grown only if s > |K| −G(|K|), which for example
for G(x) = x

2 means that Ns is grown only if it is contained in the second half of K. The
complexity of performing shrinks also depends on the type of constrained system that is
being processed, therefore the concrete choice of S and G is left as a parameter of our
algorithm. Algorithm 3 shows an extended version of the method processChain which is
able to produces MUSes and MSSes during its execution based on the above mechanism.

J. Bendík et. al. 23:9

3.5 Example Execution of Our Algorithm
The following example explains the execution of our algorithm on a simple set of constraints.
The example is illustrated in Fig. 1. Let C = {c1 = a, c2 = ¬a, c3 = b, c4 = ¬a ∨ ¬b},
S(x) = x and G(x) = x.

Initially MSScan = ∅, MUScan = ∅ and all nodes are unexplored, i.e. f(Unex) = True.
Figure 1 shows the values of control variables in each iteration and also illustrates the current
states of P(C). In order to save space we encode nodes as bitvectors, for example the node
{c1, c3, c4} is written as 1011.

I. iteration
– Unex. couple 〈0000, 1111〉
– Unex. chain 〈0000, 1000, 1100, 1110, 1111〉
– Local MSS 1000 and local MUS 1100 are found and
grown/shrunk to MSS 1010 and MUS 1100
– MSScan = ∅ is updated to {1010}
– MUScan = ∅ is updated to {1100}
– f(Unex) is set to (x2 ∨ x4) ∧ (¬x1 ∨ ¬x2) 0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

II. iteration
– Unexplored couple 〈0001, 1011〉
– Unexplored chain 〈0001, 1001, 1011〉
– Local MSS 1001 is grown to the MSS 1001
– local MUS 1011 is shrunk to the MUS 1011
– MSScan ← MSScan ∪ {1001}
– MUScan ← MUScan ∪ {1011}
– f(Unex) ≡ (x2∨x4)∧ (x2∨x3)∧ (¬x1∨¬x2)∧ (¬x1∨
¬x3 ∨ ¬x4) 0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

III. iteration
– Unexplored couple 〈0011, 0111〉
– Unexplored chain 〈0011, 0111〉
– Local MSS 0111 is grown to the MSS 0111
– local MUS undefined

– MSScan ← MSScan ∪ {0111}
– f(Unex) ≡ (x2 ∨x4)∧ (x2 ∨x3)∧ (x1)∧ (¬x1 ∨¬x2)∧
(¬x1 ∨ ¬x3 ∨ ¬x4) 0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

Figure 1 An example execution of our algorithm

After the last iteration of the first phase of our algorithm there is no model of f(Unex)
(this means that Unex is empty), MSScan = {1010, 1001, 0111} and MUScan = {1100, 1011}.
Because functions S and G were stated in this example as S(x) = x, G(x) = x, each candidate
on MUS or MSS has been already shrunk or grown to MUS or MSS, respectively, therefore
MSS(C) = MSScan, MUS(C) = MUScan and the second phase of our algorithm can be
omitted.

Note that in the first iteration the node 1010 was found to be a MSS, which means that
all its supersets are unsatisfiable. One could use this fact to mark all supersets of 1010
as explored, however our algorithm does not do this because some of these subsets can be
MUSes (1011 in this example). If we were interested only in MSS enumeration we could
mark all supersets of each MSS as explored; dually in the case of only MUS enumeration.

CVIT 2016

23:10 Tunable Online MUS/MSS Enumeration

Table 1 The number of instances in which the algorithms output at least one MSS (the first
number in each cell) or MUS (the second number).

G(x)
S(x)

x 0.8x 0.6x 0.4x 0.2x 0x

B
as
ic

ap
pr
oa
ch

x 56 | 56 151 | 40 150 | 33 144 | 12 149 | 16 151 | 0
0.8x 56 | 60 149 | 44 151 | 37 144 | 16 150 | 20 152 | 0
0.6x 56 | 60 149 | 44 144 | 35 144 | 18 151 | 22 151 | 0
0.4x 54 | 60 149 | 45 140 | 36 143 | 32 150 | 30 151 | 0
0.2x 53 | 60 148 | 45 138 | 43 138 | 40 144 | 35 145 | 0
0x 0 | 60 0 | 47 0 | 46 0 | 44 0 | 37 0 | 0

P
iv
ot

ba
se
d
ap

p. x 56 | 56 151 | 40 151 | 32 151 | 14 151 | 12 144 | 0
0.8x 56 | 60 151 | 43 151 | 36 150 | 18 149 | 16 145 | 0
0.6x 56 | 60 151 | 43 151 | 35 151 | 18 152 | 16 144 | 0
0.4x 54 | 60 150 | 43 147 | 35 151 | 14 150 | 13 144 | 0
0.2x 51 | 60 146 | 45 145 | 31 148 | 12 148 | 12 143 | 0

0 0 | 61 0 | 33 0 | 22 0 | 11 0 | 9 0 | 0

MARCO 51 | 51

4 Experimental Results

We now demonstrate the performance of several variants of our algorithm on a variety of
Boolean CNF benchmarks. In particular, we implemented in C++ both the Basic and the
Pivot Based approach for constructing chains and we evaluated both these approaches using
several variants of the functions S and G. We also give a comparison with the MARCO
algorithm [15].

The MARCO algorithm was presented by its authors in two variants, the basic variant
and the optimised variant which is tailored for MUS enumeration. Both variants are iterative.
The basic variant finds in each iteration an unexplored node, checks its satisfiability and
based on the result the node is either shrunk into a MUS or grown into an MSS. Subsequently,
MARCO uses the monotonicity of P(C) to deduce satisfiability of other nodes in the same way
our algorithm does. The optimised variant differs from the basic variant in the selection of
the unexplored node; it always selects a maximal unexplored node. If the node is unsatisfiable
it is shrunk into a MUS, otherwise it is guaranteed to be an MSS. We used the optimised
variant in our experiments. The pseudocodes of both variants can be found in [15]. The key
difference between our algorithm and MARCO is the usage of local MUSes and MSSes which
are much easier to find and can be used to prune the powerset in the same way as global
MUSes/MSSes.

Note that both compared algorithms (MARCO and our algorithm) employ several
external tools during their execution, namely a SAT solver for finding the unexplored nodes,
a constraint solver to decide the satisfiability of constraint sets, and the two procedures
shrink and grow mentioned above. The list of external tools coincides for both algorithms.
Therefore, we reimplemented MARCO in C++ to ensure that the two algorithms use the
same implementations of the shrink and grow methods and the same solvers. As both the
SAT solver and constraint solver we used the miniSAT tool [9] and we used the simple
implementation of the shrink and grow methods as described earlier. Note that there are
some efficient implementations of the shrink and grow methods for Boolean constraints,
however, in general there might be no effective implementation of these methods. That is
why we used the simple implementations.

As experimental data we used a collection of 294 unsatisfiable Boolean CNF Benchmarks
that were taken from the MUS track of the 2011 SAT competition [1]. The benchmarks

J. Bendík et. al. 23:11

Table 2 The 5% trimmed sum of outputted MSSes and MUSes (summed over all 294 instances).
The first number in each cell is the number of outputted MSSes, the second is the number of
outputted MUSes.

G(x)
S(x)

x 0.8x 0.6x 0.4x 0.2x 0x

B
as
ic

ap
pr
oa
ch

x 1744 | 339 9798 | 212 9936 | 87 6942 | 0 9726 | 2 10216 | 0
0.8x 1741 | 344 9908 | 217 9756 | 94 6787 | 2 9684 | 6 9378 | 0
0.6x 1740 | 348 9859 | 224 6969 | 40 6999 | 4 9696 | 8 9436 | 0
0.4x 1877 | 436 10013 | 252 7218 | 67 7694 | 50 10420 | 39 10114 | 0
0.2x 1757 | 635 10161 | 527 7925 | 262 8196 | 101 10853 | 66 10111 | 0

0 0 | 632 0 | 554 0 | 356 0 | 107 0 | 68 0 | 0

P
iv
ot

ba
se
d
ap

p. x 2535 | 349 8330 | 208 7775 | 71 6705 | 0 6725 | 0 5089 | 0
0.8x 2660 | 492 8336 | 255 7680 | 85 6961 | 4 6889 | 2 5061 | 0
0.6x 2771 | 567 8481 | 290 7779 | 92 7066 | 4 6830 | 2 5067 | 0
0.4x 2814 | 597 8418 | 388 7975 | 145 6814 | 0 6950 | 0 5302 | 0
0.2x 2763 | 837 8633 | 697 7220 | 41 6563 | 0 6409 | 0 4910 | 0

0 0 | 839 0 | 404 0 | 10 0 | 0 0 | 0 0 | 0

MARCO 749 | 215

range in their size from 70 to 16 million constraints and from 26 to 4.4 million variables
and were drawn from a variety of domains and applications. All experiments were run with
a time limit of 60 seconds.

Due to the potentially exponentially many MUSes and/or MSSes in each instance, the
complete MUS and MSS enumeration is generally intractable. Moreover, even outputting
a single MUS/MSS can be intractable for larger instances as it naturally includes solving
the satisfiability problem, which is for Boolean instances NP-complete. Table 1 shows in
how many instances the variants of our algorithm were able to output at least one MUS or
MSS. MARCO was able to output at least one MUS and one MSS in 51 instances whereas
several variants of our algorithm were able to output some MSSes in about 150 instances and
some MUSes in up to 60 instances. Some of the 296 instances are just intractable for the
solver which is not able to perform even a single consistency check within the used time limit.
The other significant factor that affected the results is the complexity of the shrink method.
MARCO in every iteration either “hits” a satisfiable node and directly outputs it as an MSS
or waits till the shrink method shrinks the unsatisfiable node into a MUS. Therefore, each
call of the shrink method can suspend the execution for a nontrivial time.

One can see that our algorithm also suffers from the possibly very expensive shrink calls
and performs very poorly when the S function is set to S(x) = x. On the other hand,
the variants that perform only the “easier” shrinks by setting S to be S(x) < x achieved
better results. The grow method is generally cheaper to perform than the shrink method as
checking whether an addition of a constraint to a satisfiable set of constraints makes this
set unsatisfiable is usually cheaper than the dual task. No significant difference between the
Basic and the Pivot based approach was captured in this comparison.

Another comparison can be found in Table 2 that shows the 5% trimmed sums of outputted
MSSes and MUSes (summed over all of the 294 instances), i.e. 5% of the instances with the
least outputted MSSes (MSSes) and 5% of the instances with the most outputted MSSes
(MSSes) were discarded. The trimmed sum is based on a trimmed median which is useful
estimator in statistics because it discards the most extreme observations.

All variants of our algorithm were noticeably better in MSS enumeration than MARCO.
In the case of MUS enumeration MARCO outperformed these variants of our algorithm
that shrink only some of the local MUSes, i.e. variants where S(x) = 0.6x and S(x) = 0.4x.

CVIT 2016

23:12 Tunable Online MUS/MSS Enumeration

Table 3 The results of the experiments with a time limit of 1800 seconds.

MSS enumeration MUS enumeration
at least one MSS 5% trimmed sum at least one MUS 5% trimmed sum

MARCO 112 50855 112 7337
BA S(x) = 0.2x, G(x) = 0.2x 167 80921 52 159
BA S(x) = x, G(x) = 0.2x 106 61010 114 19059
PBA S(x) = 0.8x, G(x) = 0.2x 170 118151 76 14565
PBA S(x) = x, G(x) = 0.2x 104 61537 112 19030

However, the variants with S(x) = x and S(x) = 0.8x performed better, especially the
variant with G(x) = 0.2x, S(x) = x outputted about three times more MUSes than MARCO.
As the Pivot based approach is randomised its performance may vary if it is run repeatedly
on the same instances; the result of a single run may be misleading. Therefore, we ran all
tests of the Pivot based approach repeatedly and the tables show the average values.

The time limit of 60 seconds is quite short and the results of such experiments may be
misleading. Therefore, we also evaluated MARCO and both the Basic approach (BA) and
the Pivot based approach (PBA) on the same set of benchmarks with a time limit of 1800
seconds. The results of these experiments are shown in Table 3. We used two different
settings for BA and two different settings for PBA which were chosen based on the results of
the experiments with the time limit of 60 seconds. MARCO was able to output at least one
MSS in 112 instances whereas PBA with S(x) = 0.8x and G(x) = 0.2x was able to output at
least one MSS in 170 instances. Also, the 5% trimmed sum of outputted MSSes by PBA is
more than 2 times higher the 5% trimmed sum of outputted MSSes by MARCO.

In the case of MUS enumeration the number of instances in which MARCO was able to
output at least one MUS is almost the same as the number achieved by BA and PBA with
S(x) = x, G(x) = 0.2x. However, the 5% trimmed sum of outputted MUSes by MARCO is
significantly lower. We believe that this is caused by the relative complexity of performing
shrinks. Our algorithm performs easier shrinks because it shrinks local MUSes which are
usually “closer” to (global) MUSes whereas MARCO shrinks random nodes. Therefore,
MARCO may be able to perform some shrinks within the given time limit but it is able to
perform significantly fewer shrinks than our algorithm.

5 Conclusion

In this paper, we have presented a novel algorithm for online enumeration of MUSes and
MSSes which is applicable to any type of constraint system. The core of the algorithm is
based on a novel approach utilising the so-called local MUSes/MSSes found using binary
search. This approach allows the algorithm to efficiently explore the space of all subsets of
a given set of constraints. We have made an experimental comparison with MARCO, the
state-of-the-art algorithm for online MUS and MSS enumeration. The results show that our
algorithm outperforms MARCO. Our algorithm can be built on top of any consistency solver
and can employ any implementation of the shrink and grow methods, therefore any future
advance in this areas can be reflected in the performance of our algorithm.

One direction of future research is to aim at parallel processing of the search space in
order to improve the performance of our approach; there are usually many disjoint unexplored
chains that can be processed concurrently. Another possible direction is to focus on some
specific types of constraint systems and customise our algorithm to be more efficient for these
systems.

J. Bendík et. al. 23:13

References
1 MUS track of the 2011 SAT competition. http://www.cril.univ-artois.fr/SAT11/.
2 Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah. Reveal: A formal verification

tool for verilog designs. In LPAR, volume 5330 of Lecture Notes in Computer Science,
pages 343–352. Springer, 2008.

3 James Bailey and Peter J Stuckey. Discovery of minimal unsatisfiable subsets of constraints
using hitting set dualization. In Practical Aspects of Declarative Languages, pages 174–186.
Springer, 2005.

4 Anton Belov and Joao Marques-Silva. MUSer2: An efficient MUS extractor. Journal on
Satisfiability, Boolean Modeling and Computation, 8:123–128, 2012.

5 Jaroslav Bendík, Nikola Beneš, Jiří Barnat, and Ivana Černá. Finding boundary elements
in ordered sets with application to safety and requirements analysis. In SEFM, volume
9763 of Lecture Notes in Computer Science, pages 121–136. Springer, 2016.

6 Elazar Birnbaum and Eliezer L. Lozinskii. Consistent subsets of inconsistent systems:
structure and behaviour. J. Exp. Theor. Artif. Intell., 15(1):25–46, 2003.

7 Renato Bruni and Antonio Sassano. Restoring satisfiability or maintaining unsatisfiabil-
ity by finding small unsatisfiable subformulae. Electronic Notes in Discrete Mathematics,
9:162–173, 2001.

8 Maria Garcia de la Banda, Peter J. Stuckey, and Jeremy Wazny. Finding all minimal
unsatisfiable subsets. In Proceedings of the 5th ACM SIGPLAN international conference
on Principles and practice of declaritive programming, pages 32–43. ACM, 2003.

9 Niklas Eén and Niklas Sörensson. An extensible sat-solver. In SAT, volume 2919 of Lecture
Notes in Computer Science, pages 502–518. Springer, 2003.

10 Benjamin Han and Shie-Jue Lee. Deriving minimal conflict sets by cs-trees with mark set
in diagnosis from first principles. IEEE Trans. Systems, Man, and Cybernetics, Part B,
29(2):281–286, 1999.

11 Aimin Hou. A theory of measurement in diagnosis from first principles. Artif. Intell.,
65(2):281–328, 1994.

12 Ulrich Junker. QUICKXPLAIN: Preferred explanations and relaxations for over-
constrained problems. In AAAI, pages 167–172. AAAI Press / The MIT Press, 2004.

13 Mark H. Liffiton and Ammar Malik. Enumerating infeasibility: Finding multiple muses
quickly. In Integration of AI and OR Techniques in Constraint Programming for Combin-
atorial Optimization Problems, 10th International Conference, CPAIOR 2013, Yorktown
Heights, NY, USA, May 18-22, 2013. Proceedings, volume 7874 of Lecture Notes in Com-
puter Science, pages 160–175. Springer, 2013.

14 Mark H. Liffiton, Michael D. Moffitt, Martha E. Pollack, and Karem A. Sakallah. Identify-
ing conflicts in overconstrained temporal problems. In IJCAI, pages 205–211. Professional
Book Center, 2005.

15 Mark H. Liffiton, Alessandro Previti, Ammar Malik, and Joao Marques-Silva. Fast, flexible
MUS enumeration. Constraints, pages 1–28, 2015.

16 Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing minimal unsatisfiable
subsets of constraints. Journal of Automated Reasoning, 40(1):1–33, 2008.

17 Yoonna Oh, Maher N. Mneimneh, Zaher S. Andraus, Karem A. Sakallah, and Igor L.
Markov. AMUSE: A minimally-unsatisfiable subformula extractor. In DAC, pages 518–
523. ACM, 2004.

18 Alessandro Previti and João Marques-Silva. Partial MUS enumeration. In Proceedings of
the Twenty-Seventh AAAI Conference on Artificial Intelligence, July 14-18, 2013, Bellevue,
Washington, USA. AAAI Press, 2013.

19 Lintao Zhang and Sharad Malik. Extracting small unsatisfiable cores from unsatisfiable
boolean formula. SAT, 3, 2003.

CVIT 2016

http://www.cril.univ-artois.fr/SAT11/

	Introduction
	Related Work
	Our Contribution

	Preliminaries
	Algorithm
	Basic Schema
	Symbolic Representation of Nodes
	Unexplored Nodes Selection
	Online MUS/MSS Enumeration
	Example Execution of Our Algorithm

	Experimental Results
	Conclusion

