
Consistency Checking in Requirements Analysis
Jaroslav Bendík

Faculty of Informatics, Masaryk University
Brno, Czech Republic
xbendik@fi.muni.cz

ABSTRACT
In the last decade it became a common practise to formalise software
requirements using a mathematical language of temporal logics,
e.g., LTL. The formalisation removes ambiguity and improves un-
derstanding. Formal description also enables various model-based
techniques, like formal verification. Moreover, we get the oppor-
tunity to check the requirements earlier, even before any system
model is built. This so called requirements sanity checking aims
to assure that a given set of requirements is consistent, i.e., that
a product satisfying all the requirements can be developed. If incon-
sistencies are found, it is desirable to present them to the user in
a minimal fashion, exposing the core problems among the require-
ments. Such cores are called minimal inconsistent subsets (MISes).
In this work, we present a framework for online MISes enumeration
in the domain of temporal logics.
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1 INTRODUCTION
Establishing requirements is an important stage in all development.
The importance of a clear and precise specification is apparent
from the necessity of a final-product compliance verification. Yet
the specification itself is rarely described in an unambiguous way
as a natural language is usually used to express the requirements.
Still, the formal description is an essential for any kind of com-
prehrensive requirements verification [16]. Recent years have seen
a tendencies to use the mathematical langauage of temporal logics,
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e.g., the Linear Temporal Logic [20] (LTL), to specify functional sys-
tem requirements. Formal description enables various model-based
techniques, such as model checking [13] or theorem proving [11].
Moreover, we also get the opportunity to check the requirements
earlier, even before any system model is built. This so-called re-
quirements sanity checking [3] aims to assure that a given set of
requirements is consistent and that there are no redundancies. The
presence of redundant requirements can possibly lead to further
problems in future development and the inconsistency even means
that no product satisfying all the requirements can be developed. If
redundancies or inconsistencies are found, it is desirable to present
them to the user in a concise fashion, exposing the core problem
among the requirements. Such cores are calledminimal inconsistent
subsets (MISes) or also minimal unsatisfiable subsets of a given set
of requirements. As redundancy checking can be usually reduced
to inconsistency checking [2], the goal is thus to find all MISes.

We illustrate the inconsistency checking on an example. Assume
that we are going to build a system that contains one peculiar com-
ponent that has a very expensive initialisation phase and also a very
expensive shutdown phase. We formalise the requirements using
the branching temporal logic CTL [13]. In the formulae we use the
atomic propositions q denoting that a query has arrived, r denoting
that the component is running, andm denoting that the system is
taken down formaintenance. Our first requirement states that when-
ever a query arrives, the component has to become active eventually,
formally φ1 := AG(q → AF r ). The second requirement states that
once the component is started, it may never be stopped. This may
be a reasonable requirement, e.g.,if the component’s initialisation
is expensive, formally φ2 := AG(r → AG r ). The third requirement
states that the system has to be taken down for maintenance once
in a while. This also means that the component has to become
inactive at that time. This is formalised as φ3 := AGAF (m ∧ ¬r ).
Our last requirement states that after the maintenance, the system
(including the component we are interested in) has to be restarted,
formally φ4 := AG(m → AF (¬m ∧ r )). The situation is illustrated
in Fig. 1. We discover that there is one minimal inconsistent sub-
set of the four requirements, namely {φ2,φ3,φ4}, and that there
are three maximal consistent subsets of the requirements, namely
{φ1,φ2,φ3}, {φ1,φ2,φ4}, {φ1,φ3,φ4}. The consistency of the first
set {φ1,φ2,φ3} might be surprising, as one would suspect the pair
of requirements φ2 and φ3 to be the source of inconsistency. How-
ever, the first three requirements can hold at the same time – in
systems where no queries arrive at all. In these situations we say
that the requirements hold vacuously. There are ways of dealing
with vacuity, such as employing the so-called vacuity witnesses [6].

There are two main issues concerning MISes enumeration. First,
the complete enumeration of MISes is generally intractable due
to the potentially exponentially many results. On the other hand,
the more MISes are found the better insight into the inconsistency
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Figure 1: Illustration of the requirements analysis example.
The subset with dashed outline is the minimal inconsistent
one, the subsets with solid outline are the maximal consis-
tent ones.

among requirements is provided. Therefore, it makes sense to study
algorithms that output MISes in an online manner (i.e., incremen-
tally). Second, every algorithm for finding MISes has to perform
several consistency checks during its execution. In case of tempo-
ral logics, the consistency checks are usually very expensive to
perform, especially compared to other domains like SAT or SMT.
Therefore, a good algorithm for MISes enumeration should tend to
minimise the number of performed consistency checks.

In this paper we focus on online enumeration of MISes of a given
inconsistent set of requirements which are expressed in some tem-
poral logic like LTL. Besides the attempt to enumerate as many
MISes as possible we tend to minimise the number of performed
consistency checks during the computation.

2 RELATEDWORK
The problem of MISes finding is well known in the area of constraint
processing where a satisfiability of a set of constraints is examined.
Several algorithms for finding MISes of an overconstrained set have
been developed. However, the majority of existing approaches were
tailored for a specific type of mathematical language (constraints)
which is not suitable for modeling of system requirements, e.g., SAT
or SMT constraints. Also, many of these approaches focus only on
extracting a single MIS of an overconstrained system [7, 19].

There are some algorithms for complete MIS enumeration that
are applicable to any type of constraints, e.g., the MARCO [18] and
the DAA [1] algorithms. These algorithms can be viewed more like
a general schema that can employ as a subroutine any single MIS
extraction algorithm, which makes them domain agnostic. However,
we are not aware of any existing efficient single MIS extraction
algorithm that is designed for temporal logic constraints. Also,
these algorithms do not tend to minimise the number of performed
consistency checks which is the most important criterion in the
case of MISes enumeration of constraints expressed in a temporal
logic.

Recently, a tool for online LTLMISes enumeration, called Looney,
was presented [2]. However, Looney is built on an explicit enumer-
ation of every subset of a given set of requirements which makes it
suitable only for small instances as the number of subsets is expo-
nential to the number of requirements. We made an experimental
evaluation [8] of Looney where we also presented the basic ver-
sion of our MISes enumeration algorithm called TOME; TOME has
shown to be substantially faster than Looney.

Some projects, e.g., the one of Schuppan [22] or the one of Hantry
and Hacid [15], focus on finding unsatisfiable and unrealizable cores
of LTL formulas. However, they do not guarantee that a minimal
core, i.e., a MIS, is returned.

There are several frameworks that focus on the formalization of
software requirements. Such a framework usually accepts as an in-
put a set of requirements expressed in some natural language-like
format which has to, however, obey some very restricted grammar.
This grammar restriction allows to subsequently automatically con-
vert the requirements into a language of some temporal logic. Such
functionality is, for example, provided by the ForReq framework [4].
Our goal is not to implement such framework; instead we would
like to develop efficient algorithms for MISes enumeration that
could be subsequently integrated into these frameworks.

Finally, there are several techniques that can be used for checking
consistency of requirements expressed in a temporal logic. In case
of LTL or CTL formulae, perhaphs the oldest but also the most
common approach is to reduce the consistency checking problem
to a model checking problem[13] and employ one of several existing
model checking tools (e.g., DIVINE [5], NuSMV [12] or SPOT [14]).
Besides the reduction to the model checking problem, there have
been recently proposed some completely different approches for
consistency checking [10, 17, 21]. Any of these techniques can be
employed in MISes enumeration and any future improvements in
this area can bootstrap the MISes enumeration algorithms.

3 RESEARCH QUESTIONS AND
CONTRIBUTIONS

In a current state-of-the-practise there exist tools that allow formal-
isation of software requirements in a semi-automatic way. There
are also tools for checking the consistency of a given set of for-
malized requirements. However, there is a very limited support for
MISes identification, i.e., the identification of the sources of the
inconsistency of an inconsistent set of requirements in the domain
of temporal logics. This work focuses on this gap and in particular,
it aims to address the following research questions:
RQ1: What are the differences between temporal logics and log-

ics for which efficient MIS enumeration algorithms already
exist, and what techniques used in the latter setting can be
applied also in the former one?

RQ2: Are there some domain specific properties of temporal
logics, e.g., negation normal form of LTL formulae, that
can be exploited by a singe MIS extraction algorithms?

RQ3: Which consistency checking approaches are the most suit-
able to be employed by MIS enumeration algorithms?

The main contributions of the research direction, both those that
have been already achieved and those that are expected, are the
following:

• We provide novel algorithms for online MISes enumera-
tion which are applicable to any type of input logic. These
algorithms are especially suitable for temporal logics, like
LTL, as they tend to minimise the number of performed
consistency checks during their execution which is the
most relevant criterion in the case of temporal logics do-
main. We pioneered our work in [8] where an algorithm
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Figure 2: Ahigh-level architecture of theMISes enumeration
framework and its connection to the requirements analysis.

that outperforms the current state-of-the-art tool for LTL
MISes enumeration was presented. Extended version of
this algorithm, called TOME, was presented in [9]. TOME
is able to employ any single MIS extraction procedure as
its subroutine.

• We expect to provide efficient single MIS extraction algo-
rithms in the domain of temporal logics. In particular, these
algorithms should exploit specific properties of individual
logics.

• We also plan to make a comprehensive experimental eval-
uation of LTL consistency checking techniques. Some com-
parisons of these techniques have been already done in
other works [21, 23]. However, those comparisons target
only the problem of checking a single set of requirements
for consistency. On the other hand, the MIS finding prob-
lem naturally subsumes performing of a series of consis-
tency checks, therefore a consistency checking approach
with an incremental nature can be preferred to the best
single-use approach.

4 METHODOLOGY AND EVALUATION
Our research is expected to result in a framework for online MISes
enumeration of an inconsistent set of requirements. We use the
term ’framework’ to emphasize that it can be used with any type of
requirements specification language as the core MISes enumeration
feature will be a constraint agnostic algorithm, e.g., TOME.

4.1 Methodology
Fig. 2 shows the high-level architecture of the framework and its
connection to the process of requirements analysis. In the follow-
ing text we describe the several steps shown in Fig. 2 that form
an automated framework for finding the sources of inconsistencies
of a a given set of requirements. The steps 1-3 are the steps that are
already used in current state-of-the-practise tools, the steps 4, 4a,
4b and 4c describe in further detail the functionality provided by
our framework.

Step 1: The initial step consists of entering the requirements for
the product in some natural language-like format, yet us-
ing some restricted grammar that avoids ambiguity and
improves understanding.

Step 2: In the next step the requirements are formalized by auto-
matically translating into predefined temporal logic, e.g.,
LTL. Usually, each particular grammar used in the previ-
ous step is tailored for subsequent translation into one
particular temporal logic.

Step 3: Based on the type of used temporal logic a suitable tool for
consistency checking is selected and the set of formalized
requirementsC is checked for consistency. If the set is con-
sistent, then the software development process can proceed
into a next stage. Otherwise, the source of the inconsis-
tency should be identified and the requirements should be
fixed. The steps 1-3 can be performed in a semi-automated
way by employing some of the existing requirements au-
thoring tools. In particular, the steps 2-3 are usually fully
automated, however the first step requires an interaction
with a user. The requirements authoring tools usually sup-
ply the user with an automatic grammar checking and even
suggest her words that can be used to complete unfinished
sentences.

Step 4: The inconsistent set of requirements C is submitted to our
framework. The core of the framework is an online MIS
enumeration algorithm which is applicable to any type of
formalized requirements; the only condition is that a con-
sistency checking tool for that particular format exists.
Basically any domain agnostic algorithm for MISes enu-
meration can be used in here, however, as we focus on
temporal logics, we plan to use TOME which was tailored
for this type of constraints. Complete description of the
TOME algorithm is available in [9]; briefly speaking TOME
iteratively repeats the following steps:

Step 4a: Choose some subset S of C such that the consistency
of S is not known yet and check it for consistency. If
S is shown to be inconsistent then continue with the
step 4b, otherwise repeat the step 4a.

Step 4b: Find aMIS contained in S . A universal way how to do it
is to iteratively remove one-by-one requirement from
S , after each removal check S for consistency and put
back every requirement whose removal caused S to be
consistent. Once we try to remove each requirement
from S in this way, the remaining set is a MIS of S
and thus also a MIS of C . This simple approach can
be used for every formal specification language as it
relies only on the existence of a consistency checking
tool. However it is very inefficient as it performs too
many consistency checks. Therefore, we would like to
develop specialized single MIS extracting approaches
for particular languages; mainly for LTL formulae.

Step 4c: Based on the found MIS, determine (in)consistency of
other subsets of C . If there remains a subset whose
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consistency is not known yet, then continue with the
step 4a.

Because TOME enumerates MISes incrementally, we can
either let it to enumerate all MISes, or stop it once a suffi-
cient amount of MISes is outputted; this decision is carried
out by the user of the framework.

TheMISes outputted by our framework can be subsequently used to
fix the inconsistencies among the requirements. The whole process
is usually repeated several times till the set of requirements is
found both to be consistent and providing sufficient coverage of
user expectations.

4.2 Evaluation
We are currently participating in the AMASS project. The goal of
AMASS is to create and consolidate the de-facto European-wide
open tool platform, ecosystem, and self-sustainable community for
assurance and certification of Cyber-Physical Systems (CPS) in the
largest industrial vertical markets including automotive, railway,
aerospace, space, energy. A need for identification of sources of
inconsistency of an inconsistent set of requirements is one of the
issues that is being dealt with in AMASS. The framework result-
ing from our work will be practically evaluated by our industrial
partners in the AMASS project. This means that a real set of re-
quirements taken from industry will be used as benchmarks. Also,
a feedback from requirements engineers will be obtained.

5 RESEARCH STATUS
This work is a part of my PhD studies. Besides the problem of
finding MISes in the domain of temporal logic we also focus on
solving the problem of MISes enumeration in other domains. We
have conducted a survey of both single and multiple MIS enumera-
tion approaches in SAT and SMT domains and we have identified
techniques that can be used, to some extent, also in the domain
of temporal logics. As for the high-level architecture schema of
the framework presented in this paper (Fig. 2) there are publicly
available tools for performing the steps 1-3. As for the step 4, we
have developed a domain agnostic algorithm, called TOME, for
online MISes enumeration. In order to finish the framework we
need to conduct a survey of consistency checking tools and also
develop some domain specific single MIS extraction algorithms that
would be used as TOME’s subroutines.

6 CONCLUSION
In this work we proposed a framework for identifying minimal
inconsistent subsets (MISes) of a given inconsistent set of require-
ments. The core part of this framework, i.e., a domain agnostic
algorithm for online enumeration of MISes, has been already devel-
oped. Future work will focus on a development of a domain specific
single MIS extraction algorithms that are used as subroutines of
the domain agnostic algorithm. The resultant implementation of
the framework will be evaluated by our industrial partners in the
AMASS project.
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