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Abstract. The motivation for this study comes from various sources
such as parametric formal verification, requirements engineering, and
safety analysis. In these areas, there are often situations in which we
are given a set of configurations and a property of interest with the
goal of computing all the configurations for which the property is valid.
Checking the validity of each single configuration may be a costly process.
We are thus interested in reducing the number of such validity queries.
In this work, we assume that the configuration space is equipped with
a partial ordering that is preserved by the property to be checked. In such
a case, the set of all valid configurations can be effectively represented
by the set of all maximum valid (or minimum invalid) configurations
w.r.t. the ordering. We show an algorithm to compute such boundary
elements. We explain how this general setting applies to consistency and
redundancy checking of requirements and to finding minimum cut-sets
for safety analysis. We further discuss various heuristics and evaluate
their efficiency, measured primarily by the number of validity queries, on
a preliminary set of experiments.

Keywords: Requirements analysis · Formal verification · Safety
analysis

1 Introduction

The motivation of this work comes from various source areas, such as parametric
formal verification, requirements engineering, safety analysis, or software prod-
uct lines. In these areas, the following situation often arises: We are given, as
an input, a set of configurations and a property of interest. The goal is to com-
pute the set of all the configurations that satisfy the given property. We call
such configurations valid. As a short example, one may imagine a system with
tunable parameters that is to be verified for correctness. The set of configura-
tions, in that case, is a set of all possible parameter values and the goal is to find
all such values that ensure the correctness of the given system. If we are given
a method to ascertain the validity of a single configuration, we could try running
the method repeatedly for each configuration to obtain the desired result. In the
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case of an infinite set of configurations, this approach does not terminate, and we
get at most a partial answer. However, even if the configuration space is finite,
checking configurations one by one may be too costly. We are thus interested in
reducing the number of validity checks in the finite case.

Although such reduction might be impossible in general, we focus on prob-
lems whose configuration space is equipped with a certain structure that is pre-
served by the property of interest. This may then be exploited in order to check
a smaller number of configurations and still obtain the full answer. The desired
structure is a set of dependencies of the form: “If configuration A violates the
property then configuration B does too.” Mathematically, we can either view
such structure as a directed acyclic graph of those dependencies, or as a par-
tial ordering on the set of all configurations induced by this graph. Viewed as
an ordered set, the set of all the valid configurations can be effectively represented
by the set of all the maximal valid (alternatively, minimal invalid) configurations.

We are interested in finding this boundary between valid and invalid con-
figurations while minimising the number of validity queries, i.e. the potentially
costly checks whether a given configuration satisfies the property.

We are not aware of any previous work which deals with exactly the same
problem as we do. The most related problems can be found among the Con-
straint Satisfaction Problems (CSPs) where a satisfiability of a set of constraints
is examined. When a set of constraints C is infeasible the most common analy-
sis is the maximum satisfiability problem (MaxSAT, MaxCSP), which asks for
a satisfiable subset of C with the greatest possible cardinality. Our problem
is different from MaxSAT and more related to the maximum satisfiable subset
problem (MSS) that considers maximality in the ordering sense instead of max-
imum cardinality. The goal of MSS is to find a subset of C that is satisfiable,
and that becomes unsatisfiable if any other constraint is added to this subset.
Similarly, one can define the minimum unsatisfiable subset problem (MUS).

Both MSSes and MUSes describe the boundary between the satisfiable and
unsatisfiable subsets of C and both these problems were recently addressed in
works [1,3,6,15,16]. To solve the problem, the papers use different approaches
like the duality that exists between MUSes and MSSes [1,16] or parallel enumer-
ation from bottom and top [3]. In [15] authors unify and expand upon the earlier
work, presenting a detailed explanation of the algorithm’s operation in a frame-
work that also enables clear comparisons. Paper [6] describes an MUS extractor
tool MUSer2 which implements a number of MUS extraction algorithms.

Subsets of a set of requirements are naturally ordered by the subset relation,
thus our approach can be also used to solve these problems. We deal with a more
general problem as we consider arbitrary graphs instead of the hypercube graphs
representing subsets of requirements. Our approach has thus a wider area of
potential usage. Furthermore, as is explained in Sect. 4, in the case of hypercubes
our approach can be competitive with the state-of-the-art tool Marco [15].

Safety Analysis. The safety analysis techniques are widely used during the
design phase of safety-critical systems. Their aim is to assure that the sys-
tems provide prescribed levels of safety via exploring the dependencies between
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a system-level failure and the failures of individual components. Traditionally,
the various safety analyses are done manually and are based on an informal
model of the systems. This leads to the process being very time-consuming and
the results being highly subjective. The desire to alleviate such issues somewhat
and to make the process more automated led to the development of Model-Based
Safety Analysis (MBSA) approach [13]. This approach assumes the existence of
a system model that is extended by an error model describing the way faults
may happen and propagate throughout the system. One of the problems solved
in MBSA is the computation of the so-called minimal cut-sets for a given fail-
ure, i.e. the minimal sets of low-level faults that cause the high-level failure to
manifest in the system.

One can map the minimal cut-sets problem to our setting easily. The con-
figurations are the possible sets of faults that may be enabled in the extended
system model, their ordering is given by set inclusion. Note that there might be
dependencies between some of the faults, which means that not all sets of faults
are considered to be possible. The property of interest is the non-existence of
failure and the valid configurations are exactly those sets of faults that do not
cause the failure to happen. Clearly, in this case, the minimal cut-sets correspond
exactly to the minimal invalid configurations. This means that the problem can
be solved using our approach.

To illustrate the application on a simple example, we consider an avionics
triplex sensor voter, described in [9]. The voter gains measurement data from
three sensors as well as information whether the sensors are operational. It com-
putes the differences between the sensor data and detects persistent miscompare,
i.e. situations where two sensors differ above a certain threshold for a certain
amount of time. If all three sensors are operational and two pairs of sensors have
persistent miscompare, the common sensor is marked as invalid and data is no
longer received from that sensor. If just two sensors are operational, a persistent
miscompare between the two means that the output data is considered invalid.

For simplicity, let us assume that there are two kinds of faults per sensor
and let us call these fault A and fault B. Fault A causes the sensor to transmit
wrong data while fault B causes the sensor to stop working completely. Note
that we may assume that both faults cannot occur on the same sensor, as once
fault B happens, the occurrence of fault A is irrelevant. In general, we thus have
six possible faults and 27 sets of faults to be checked, including the empty set of
faults. However, as the situation of sensors is symmetrical, we may get rid of this
symmetry and simply count the number of fault-A sensors and fault-B sensors
instead. This situation is illustrated in Fig. 1. The nodes in the graph represent
the various fault configurations: ∅ represents that no faults occur, AB represents
that fault A occurred on one sensor and fault B occurred on another sensor, etc.
The graph is created from the inclusion ordering on the fault situations.

Let us now consider the failure to deliver data to the output. As explained
above, the voter fails to deliver output if either all sensors stopped working or
have been eliminated, or if there are just two sensors working with persistent
miscompare. We assume that the persistent miscompare situation is detected
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Fig. 1. Illustration of the safety analysis example

once at least one of a pair of sensors starts transmitting wrong data, i.e. fault
A occurred on that sensor. For this reason, the minimum invalid configurations
(i.e. the minimal cut-set) are AA, AB, and BBB, while the maximum valid
configurations are A and BB.

Requirements Analysis. Establishing the requirements is an important stage
in all development. Although traditionally, software requirements were given
informally, recently there has been a growing interest in formalising these require-
ments [12]. Formal description in a kind of mathematical logic enables various
model-based techniques, such as formal verification. Moreover, we also get the
opportunity to check the requirements earlier, even before any system model is
built. This so-called requirements sanity checking [3] aims to assure that a given
set of requirements is consistent and that there are no redundancies. If incon-
sistencies or redundancies are found, it is usually desirable to present them to
the user in a minimal fashion, exposing the core problems in the requirements.
As redundancy checking can be usually reduced to inconsistency checking [2],
the goal is thus to find all minimal inconsistent subsets of requirements. Such
a problem may be clearly seen as an instance of our setting, where the configu-
rations are sets of requirements and the ordering is given by the subset relation.

We illustrate the inconsistency checking on an example. Assume that we are
given a set of four requirements. These requirements consider one particular com-
ponent in a system and constrain the way the component is used. We formalise
the requirements using the branching temporal logic CTL [8]. In the formulae
we use the atomic propositions q denoting that a query has arrived, r denoting
that the component is running, and m denoting that the system is taken down
for maintenance. Our first requirement states that whenever a query arrives, the
component has to become active eventually, formally ϕ1 := AG(q → AF r).
The second requirement states that once the component is started, it may never
be stopped. This may be a reasonable requirement e.g. if the component’s ini-
tialisation is expensive, formally ϕ2 := AG(r → AG r). The third requirement
states that the system has to be taken down for maintenance once in a while.
This also means that the component has to become inactive at that time. This
is formalised as ϕ3 := AGAF (m ∧ ¬r). Our last requirement states that after
the maintenance, the system (including the component we are interested in) has
to be restarted, formally ϕ4 := AG(m → AF (¬m ∧ r)). The situation is illus-
trated in Fig. 2. We discover that there is one minimum inconsistent subset of
the four requirements, namely {ϕ2, ϕ3, ϕ4}, and that there are three maximum
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Fig. 2. Illustration of the requirements analysis example. The subset with dashed out-
line is the maximum inconsistent one, the subsets with solid outline are the maximum
consistent ones.

consistent subsets of the requirements, namely {ϕ1, ϕ2, ϕ3}, {ϕ1, ϕ2, ϕ4},
{ϕ1, ϕ3, ϕ4}. The consistency of the first set {ϕ1, ϕ2, ϕ3} might be surprising,
as one would suspect the pair of requirements ϕ2 and ϕ3 to be the source of
inconsistency. However, the first three requirements can hold at the same time –
in systems where no queries arrive at all. In these situations we say that the
requirements hold vacuously. There are ways of dealing with vacuity, such as
employing the so-called vacuity witnesses [5].

Note that although in this example, the space of all sets of requirements had
the particular shape of a hypercube, this might not always be the case. We might
sometimes be interested in certain subsets of requirements instead of all of them.
Such a situation may arise e.g. if there are some known implications between
the requirements. Consider the example above with the added requirement that
once the component is started, it may only stop after 1 h. This requirement
is clearly implied by ϕ2 and we would therefore omit all subsets that contain
both ϕ2 and this new requirement. Another way of obtaining a non-hypercube
requirements graph is when considering requirements for several components at
once in a component-based or software product line setting. In such cases, some
of the components or product features may be incompatible and it thus only
makes sense to consider subsets of requirements that reason about compatible
components.

Outline of the Paper. The rest of this paper is organised as follows. In Sect. 2
we present the basic definitions and preliminaries and state our problem formally.
In Sect. 3 we present our new algorithm to solve the problem and discuss several
variants and heuristics of it, as well as we analyse its complexity. The algorithm
is then evaluated on a set of experiments in Sect. 4 and the paper is concluded
in Sect. 5.

2 Preliminaries and Problem Statement

In this section, we recall some basic notions that we use later in the paper.
We also introduce the formalism of annotated directed acyclic graphs that forms
the basic setting for our problem.
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Fig. 3. An example of an ADAG, the dashed vertices are the invalid ones, the grey
vertices are the maximum valid ones.

Definition 1 (Directed Acyclic Graph). A directed graph G is a pair (V,E),
where V is a finite set of vertices and E ⊆ V × V is a set of edges. An edge
(u, v) is an outgoing edge of the vertex u and an incoming edge of the vertex
v. The indegree ( outdegree) of a vertex v is the number of incoming (outgoing)
edges of v. A path from a vertex u to a vertex v in G is a sequence 〈v0, v1, · · · vk〉
of vertices such that v0 = u, vk = v, k > 0 and (vi, vi+1) ∈ E for i = 0, 1, · · · , k−
1. We say that v is reachable from u if there is a path in G from u to v.

A directed graph G = (V,E) is called a directed acyclic graph (DAG) if there
is no path 〈v0, v1, · · · vk〉 in the graph such that v0 = vk. A DAG induces a strict
partial order relation �G on its vertices as follows: u �G v if v is reachable
from u. A vertex v is said to be a minimum vertex in G if there is no u such
that u �G v. Dually, a vertex u is a maximum vertex in G if there is no v such
that u �G v.

Definition 2 (Chain Cover). A chain in a DAG G with its induced relation
�G is a sequence of one or more vertices 〈v0, v1, . . . , vk〉 such that v0 �G v1 �G

· · · �G vk. A chain cover of a DAG is a set of chains C = {c1, · · · , cl} such that
each vertex is included in exactly one chain from C. A minimum chain cover
is a chain cover containing the fewest possible number of chains. Note that the
minimum chain cover is not given uniquely.

Definition 3 (Annotated DAG). An annotated directed acyclic graph (ADAG)
is a pair (G, valid), where G = (V,E) is a directed acyclic graph and valid :
V → Bool is a validation function. The validation function is monotone on V ,
which means that for every pair u, v ∈ V if u �G v and valid(u) = false then
valid(v) = false.

The problem we are interested in can be stated as finding either a set of maxi-
mum valid vertices or a set of minimum invalid vertices. We present an algorithm
to obtain the former. However, the algorithm can be also used to obtain the lat-
ter, as the two formulations are dual.

Definition 4 (Maximum Valid Vertex and Cut). Let G = ((V,E), valid) be an
ADAG. A vertex u ∈ V is a maximum valid vertex of G iff valid(u) = true and
∀v ∈ V such that u �G v is valid(v) = false.

The maximum valid cut of G is a set of all its maximum valid vertices.
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Problem Formulation. Given an ADAG G = ((V,E), valid), find the maxi-
mum valid cut of G.

As mentioned in the introduction, evaluating the function valid on a single
configuration (a single vertex of the ADAG) might be an expensive operation.
Therefore, our aim is to propose an algorithm minimising the number of evalu-
ations of the valid function even for the price of the increased complexity of the
algorithm with respect to the number of operations over the graph.

The problem formulation assumes that the graph is acyclic and that the
validation function is monotone. We might, however, be also interested in cases
where one of these preconditions is violated. We postpone the discussion of these
possibilities to Sect. 3.5.

3 Algorithm

A naive solution of the maximum valid cut problem for a given ADAG G would
be to evaluate the valid function on each vertex, compute the �G relation for
valid vertices, and choose the maximum ones. In this naive approach, the valid
function is called once per each vertex.

3.1 Chain-Based Algorithm

Instead of dealing with each vertex of G separately we build our solution on
a decomposition of G into a set of chains and we use the fact that the validation
function is monotone. The algorithm takes as an input an ADAG G and one of
its chain covers C. Then it iteratively handles chains and removes those vertices
which cannot be the maximum valid ones.

From the definition, each vertex of the maximum valid cut of G belongs to
exactly one chain from C. Moreover, every chain contains at most one maximum
valid vertex of the graph and this vertex is at the same time the maximum
valid vertex of the chain. Let us note that the opposite implication does not
hold generally, the maximum valid vertex of a chain may not be a maximum
valid vertex of the whole graph. Therefore, the set of maximum valid vertices of
individual chains contains the maximum valid cut as its subset.

Let c = 〈v0, v1, · · · , vl〉 be an arbitrary chain of C. To find the maximum
valid vertex vh of this chain we use binary search. We take the middle vertex
cmid of c, cmid = v� l

2 � and evaluate the valid function on cmid. If cmid is valid,
then we know for sure that none of the lower vertices from c can be the maximum
valid vertex of this chain. In the other case, we claim that none of the higher
vertices from c can be maximum valid vertex. This allows us to reduce c into
half and recursively repeat the procedure. We finish with a chain consisting of
only one vertex vi. If vi is a valid vertex then it is the maximum valid vertex
of c, otherwise c does not have any valid vertex at all.

Once we have applied the binary search on each chain from C, we have the
set H of maximum vertices of these chains. To obtain the maximum valid cut
of G from H we just compute the �G relation for each pair from H and remove
from H all those vertices that are not maximum w.r.t. �G.
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For an illustration of the chain based algorithm, assume that we are given
the graph from Fig. 3 and as a chain cover we take these chains: 〈b, c, d, e, f, g〉,
〈a, h, j, k,m〉, 〈i, o, l, p〉. The vertices e, j, o are found to be the maximum valid
vertices of these chains and the �G relation is computed for these three vertices.
Vertex j is found to be lower than e and vertices o, e are mutually unreachable,
hence {e, o} is the resulting maximum valid cut.

The number of calls to valid in this algorithm depends on the number of
chains in C and the number of calls used in the binary searches. The number of
calls is logarithmic in the length of the chain in every binary search. Therefore,
the total number of calls is O(|C| log L) where |C| is the number of chains in C
and L is the length of the longest chain in C.

Note that there are algorithms such as [7,11] that compute the minimum
chain cover of a given graph. We may thus make use of these algorithms to
reduce the number of chains that need to be processed by this algorithm.

3.2 Cutoff-Based Algorithm

We now improve the efficiency of our algorithm by decreasing the chain lengths
and possibly eliminating some of the chains completely. The main idea makes use
of the fact that a vertex vi is recognised as the maximum valid vertex of a chain
c = 〈v0, v1, · · · , vi, · · · , vl〉 (if c has any). From this we can deduce that not
only vertices from c lower than vi cannot belong to the maximum valid cut, but
neither do any vertices from G lower than vi. Symmetrically, none of the vertices
from G higher than vi+1 can belong to the maximum valid cut. Therefore, we
can remove all vertices lower than vi and higher than vi+1, including vi+1, from
all chains and thus reduce their size and possibly the number of valid calls in
the future.

Definition 5 (Cutoff Transformation). Let G be an ADAG and C its chain
cover. Let c = 〈v0, v1, · · · , vi, · · · , vl〉 be a chain from C and let vi be its maximum
valid vertex. Then the cutoff of G is a pair G and C generated from G and C,
respectively, by removing:

– vertices which are lower than vi,
– vertices which are higher than vi+1, and
– the vertex vi+1.

In case that c does not have a maximum valid vertex we define the cutoff of G
to be a tuple G and C created from G and C, respectively, by removing:

– vertices which are higher than v0, and
– the vertex v0.

As this vertex removal may make some chains empty, we also remove the empty
chains from C.

Theorem 1 (Cutoff Property). Let G be an ADAG, C its chain cover, and
G,C be their cutoff. Then graphs G and G have the same maximum valid cuts,
C is a chain cover of G, and |C| ≥ |C|.
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MaxValid(c = 〈v0, v1, . . . , vl〉, IsV alid())

1 if c is empty
2 then return nil
3 middle ← � l

2
�

4 if IsValid(vmiddle)
5 then x ← MaxValid(〈vmiddle+1, . . . , vl〉, IsV alid())
6 if x = nil
7 then return middle
8 else return x
9 else

10 return MaxValid(〈v0, . . . , vmiddle−1〉, IsV alid())

Cutoff(G = (V,E), c = 〈v0, v1, ..., vl〉, i)
1 if i �= nil
2 then set v.cand = false for each v ∈ V lower than vi
3 set v.cand = false for each v ∈ V higher than vi+1

4 set vi+1.cand = false
5 else set v.cand = false for each v ∈ V higher than v0
6 set v0.cand = false

MaxValidCut(G = (V,E), IsV alid())

1 set v.cand = true for each v ∈ V
2 compute the relation �G

3 ChainCover ← MinimumChainCover(G)
4 for each chain ∈ ChainCover
5 do ProcessChain(G, IsV alid(), chain)
6 return V

ProcessChain(G, IsV alid(), c)

1 remove from c all vertices v with v.cand = false
2 index ← MaxValid(c, IsV alid())
3 Cutoff(G, c, index)

Algorithm 1. Maximum Valid Cut Algorithm

Theorem 2 (Maximal Cut Property). Let G be an ADAG and C its chain cover.
Let us apply step by step the cutoff transformation on all chains from C and let
G and C be the resulting graph and its chain cover respectively. Then every chain
in C is just a single vertex and C is exactly the maximum valid cut of G.

The algorithm based on the cutoff transformation is shown as Algorithm1.
The algorithm assumes that the reachability relation �G is pre-computed.
The relation is used both for computing the minimum chain cover and when
detecting lower and higher vertices, however, bread-first-search can be also used
for this detection. Instead of removing vertices from the graph we just mark
them with a binary flag cand (for candidate) initially set to true. Once we have
discovered that a vertex cannot be a maximum valid one, the flag is set to false.

Contrary to the previous algorithm based on chains, once the algorithm based
on cutoffs processes the last chain from the chain cover of the original graph G,
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Fig. 4. Illustration of the cutoff based algorithm. The graph is covered with three
chains 〈b, c, d, e, f, g〉, 〈a, h, j, k,m〉, 〈i, o, l, p〉 and they are processed in this order. At
first, the vertex e is found to be the maximum valid vertex of the first chain and the
consequently made cutoff reduces the set of chains to 〈e〉, 〈k〉, 〈o, l, p〉. In the next
step, the chain 〈k〉 is processed and no valid vertex on this chain is found, but the
cutoff is made and the set of chains is reduced to 〈e〉, 〈o〉. In the last step, the chain
〈o〉 is processed and o is found to be valid. The result of the third cutoff is the maximal
valid cut {e, o}. The grey nodes are nodes which have already been determined to be
valid ones.

the set C contains exactly the maximum valid cut of G and no other computation
is needed.

Figure 4 illustrates the cutoff based algorithm on the graph from Fig. 3.
The cutoffs significantly reduce the space of vertices that can be maximum valid
ones. After processing of the first two chains only two vertices are left as the
possible maximum valid ones.

3.3 Complexity

The time complexity analysis of the cutoff algorithm is given w.r.t. the size of
the graph G = (V,E) and we separately evaluate the number of valid calls and
the number of all other operations.

The number of calls to the valid function depends on the number of chains
in C and the number of calls used in the binary searches. The total number
of calls is in the worst case the same as with the algorithm based on chains,
i.e. O(|C| log L) where |C| is the number of chains in C and L is the length of
the longest chain in C. Note that the size of the minimum chain cover can be
bounded due to Dilworth’s theorem.
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Theorem 3 (Dilworth’s Theorem [10]). The size of the minimum chain cover of
graph G equals to the size of a maximum number of pairwise unrelated elements,
where u is unrelated to v if neither u �G v not v �G u.

To evaluate the overall complexity of the algorithm we denote by Tvalid the
time needed for one evaluation of valid .

The reachability relation �G is in fact equal to the transitive closure of the
graph and can be computed in O(|V | · |E|) with the help of, e.g., depth-first
search starting from each node of the graph.

The procedure ProcessChain first removes from the chain all vertices that
have been recognised as not maximum valid in some of the previous cutoff trans-
formations. When starting the MaxValidCut algorithm, each vertex is included
in exactly one chain of the chain cover. Each vertex is removed at most once,
hence the overall number of removals is bounded by the size of V and the com-
plexity of the removals only is O(|V |).

The procedure MaxValid is an analogy of the binary search. It calls the
validation function on the middle vertex of the given chain c, splits the chain
into two halves, and recursively continues on one of these halves. The complexity
of MaxValid is O(Tvalid · log |c|) where |c| is the length of c. The procedure is
called once for each chain of the chain cover C of G resulting in the overall
complexity of O(Tvalid · |C| · log L) where L is the length of the longest chain
from C.

The procedure Cutoff marks those vertices which cannot be maximum
valid ones. Either bread-first-search or the �G relation can be used to detect the
vertices, which should be marked, and each vertex is marked as false at most
once. Therefore all the markings (including the initialisation) take time O(|V |).

The most time consuming part of the algorithm (excluding the valid calls)
is the computation of the minimum chain cover taking time O(|C| · |V |2). For
details and complexity analysis please refer to [7,11]. The total time complexity
of the cutoff algorithm is thus O(|V |3 + Tvalid · |C| · log L).

3.4 Heuristics

The cutoff algorithm works with the minimum chain cover, however, the algo-
rithm does not prescribe the order in which individual chains are processed.
Each cutoff transformation affects the chains that have not been processed yet.
Therefore the order in which the chains are processed affects the total number
of calls to the validation function.

Cutting Power Based Heuristics. The order which minimises the number of
calls to the validation function cannot be determined without the information
which vertices are valid and which are not. Instead, for each chain c we can
identify the minimum and the maximum number of vertices that can be cut
off as a result of its processing. Let us define for each vertex vi from the chain
〈v0, v1, . . . , vl〉 its cutting power as the number of vertices of G lower than vi plus
the number of vertices higher than vi+1 plus 1 (for vertex vi+1). Then the max-
imum cutting power of chain c is the maximum of cutting powers of its vertices.
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Average and median cutting power of a chain can be defined in a similar way.
Cutting powers of vertices can be used to propose several heuristics decreasing
the number of calls to the validation function.

The first heuristic sorts the chains in descending order according to their
maximum cutting powers. This heuristic can lead to a large reduction of the
graph while processing the first few chains. However, this happens only if the
vertices with maximum cutting power are the maximum valid vertices of these
chains.

As the second heuristic we propose to compute for each chain c its average
cutting power which equals to the arithmetic mean of the cutting powers of its
vertices. The heuristic sorts the chains in descending order according to their
average cutting power. A similar heuristic is to order the chains according to the
median of the cutting powers of its vertices. These two heuristics can speed up
the average performance of the algorithm.

Note that to compute the cutting power of a vertex we need to know the
reachability relation of the graph. The reachability relation is pre-computed
when the minimum chain cover is constructed. The only additional computation
required by the heuristics is thus the sorting which takes O(|C| · log |C|) time
and does not increase the asymptotic complexity of the cutoff algorithm.

All heuristics can be improved if we recompute the cutting powers of ver-
tices and sort the chains after each cutoff transformation. However, this requires
recomputation of the reachability relation which is rather expensive and increases
the complexity of the algorithm. As explained in the introduction, our goal is to
minimise the number of calls to the validation function as it is assumed to be
a very expensive operation. When choosing the appropriate heuristic we have to
trade off between the number of validation function calls and the complexity of
the heuristic.

Cutting Power Approximation. Yet another possibility is to approximate the
cutting power of vertices by some easily computable characteristic. For instance,
we can take the outdegree of a vertex as a high outdegree can indicate high cut-
ting power. The same holds for the indegree of a vertex. Again, we can sort chains
according to out/indegrees, average degree or median. On the one hand, this app-
roach could be less effective than the approaches based on cutting powers. On
the other hand, it is relatively cheap and affords to recompute the ordering after
each cutoff transformation.

Online Computed Chains. As the precomputation of the minimum chain
cover is rather expensive, our last heuristic drops this precomputation. The
chains are instead computed on the fly. To construct a chain we take an arbi-
trary unprocessed vertex (i.e. a vertex whose validity is not known yet) and by
following its unprocessed predecessors and successors we extend it to a chain.
This chain is then processed as described in the cutoff algorithm and we repeat
this process as long as there are some unprocessed vertices. We call this heuris-
tic the online heuristic. Obviously, the disadvantage of this approach is that
the number of the on-the-fly constructed chains can be much higher than the
size of the minimal chain cover. However, if we precompute the minimal chain
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Fig. 5. Efficiency of our algorithm with online computed chain cover (online), minimum
chain cover (randO), and heuristics determining the order in which individual chains
are processed. The graph is in log scale.

cover, its minimality is guaranteed only before the first cutoff transformation
is made as this transformation can shorten some chains of the cover and there
can emerge some chains that can be joined together. The online heuristic always
processes a chain that cannot be extended any more. It can thus possibly process
even less chains than the original algorithm with the minimum chain cover pre-
computed. Moreover, the computation of the minimal chain cover is the most
expensive operation of our algorithm besides the validation calls. The online
heuristic does not need this precomputation and hence the �G relation does
not need to be computed. The time complexity of the algorithm is reduced to
O(|V |+ |E|+Tvalid · |C| · log L). We compare the online heuristic with the others
in the next section.

3.5 Relaxing the Preconditions

The two main preconditions of our approach are that the graph is assumed to
be acyclic and that the validation function is monotone on this graph. A natural
question might arise whether we could relax one of these preconditions. Consider
first an arbitrary annotated graph, i.e. a directed graph with a monotone valida-
tion function. The monotonicity implies that all vertices lying on one cycle are
either all valid or all invalid. This means that we can preprocess the graph using
any standard algorithm for decomposition into strongly connected components
and work on the resulting (acyclic!) graph of strongly connected components.

Consider now a second possibility, where we retain the acyclic property of the
graph yet relax the monotonicity precondition. If we run our algorithm on such
a graph, we might not get the maximal valid cut of the graph. Nevertheless, the
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Fig. 6. A log scale graph that compares our algorithm with the Marco algorithm. The
graph shows the percentage of subsets that were validated by the algorithms. Our
algorithm is denoted by MVC (Maximum Valid Cut).

algorithm terminates and we obtain a set of vertices with the property that they
are valid and their immediate successors in the graph are all invalid. We thus
obtain at least partial evidence of the boundary between valid and invalid ver-
tices. This can help us identify the source of errors in application areas such as
software-product lines or in version control branches, which may not necessarily
be monotone.

4 Experimental Evaluation

We implemented the cutoff algorithm and experimentally evaluated its behaviour
on different types of graphs. While evaluating the algorithm we focused on the
number of calls of the validation function as our aim is to minimise this number.

The first set of experiments was run on three different sets of randomly gener-
ated ADAGs of size up to 5000 vertices. The efficiency of the algorithm strongly
depends on many factors like the relative number of pairwise unreachable ver-
tices, the number and lengths of chains, density of the graph, etc. We tested
the variant of our algorithm with online computed chain cover (online) and with
precomputed minimum chain cover (randO). The results are shown in boxplot
in Fig. 5, the boxplot shows the percentage of vertices which were validated.
The online variant has higher third quartile but lower median.

Moreover, we tried the five heuristics described earlier. The heuristics sort
chains from the minimum chain cover according to average cutting powers of
individual chains (aveCP), medians of cutting powers of chains (medCP), average
degrees of vertices of chains (aveD), and sum of the degrees of vertices of chains.
The best performance was achieved using the sumD heuristic which has a median
of 13 %.
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Note that there are ADAGs for which almost all vertices have to be validated,
namely graphs where almost all vertices are pairwise unreachable. These types
of graphs were not included in our data sets for the experimental evaluation.

Requirements Checking. We now evaluate the performance of the algorithm
on the graphs with the specific shape of a hypercube that represent all subsets
of a set of requirements. For n requirements the hypercube consists of 2n ver-
tices and n2n−1 edges. We used requirements specified in propositional logic and
employed the SAT instances generator from [14] to generate experimental data.
Experiments were run on requirements sets containing up to 24 requirements
and hundred instances for each size. For these experiments we ran the online
algorithm as it has shown to be the best one for hypercubes. The minimum-
chain based approach performs worse on hypercubes as the minimal chain cover
of a hypercube contains a large number of short chains. However, the binary
search approach performs better on longer chains.

To provide a better insight into the qualitative parameters of our algorithm
we compare its behaviour with two other tools solving the problem of finding the
minimal unsatisfiable subsets of a set of requirements, namely [3,15]. Authors
of [3] use the linear temporal logic (LTL) to specify requirements and report
efficiency of around 10 % (i.e. 10 % of all vertices of the hypercube were vali-
dated). We were not able to repeat their experiments exactly as the authors do
not provide their experimental data. Moreover, LTL is hard-coded in their tool.
However, in our experiments with SAT instances the ratio of validated vertices
decreases to 0.05 %. The MARCO tool, presented in [15], is proposed to solve any
constraint sets. We compared the efficiency of our algorithm against MARCO
on the same sets of SAT instances. As can be seen in Fig. 6, our tool makes less
queries to the SAT-solver.

5 Conclusion

In this paper, we have focused on finding boundary elements in partially ordered
sets, seen as a kind of graphs. We have discussed the mapping of this problem to
various activities in software engineering; we have shown applications in safety
and requirements analysis. We have presented a new general algorithm to solve
this problem, including several variants and heuristics. We have found that the
efficiency of the heuristics depends on the structure of the input graph. For
graphs with the hypercube structure, the online variant of our algorithm per-
formed the best.

As a future work, we consider several improvements of our basic algorithm.
One possible direction of research is to aim at parallel processing of the con-
figuration space in order to further improve the performance of our approach.
Another is to focus more on the specific cases of hypercube graphs and exploit
their structure more on the fly. We also want to consider more applications of
our approach, such as software product line engineering and discovering incom-
patibilities in component-based designs. We also believe that our method can be
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applied to various other domains, such as the parameter synthesis for biological
systems [4]. We intend to explore these applications in more detail.
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