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1 Faculty of Informatics, Masaryk University, Brno, Czech Republic
{xbendik,cerna}@fi.muni.cz

2 Department of Computer Science & Engineering, University of Minnesota, MN,
USA

{ghass013,mwwhalen}@umn.edu

Abstract. Symbolic model checkers can construct proofs of safety prop-
erties over complex models, but when a proof succeeds, the results do not
generally provide much insight to the user. Minimal Inductive Validity
Cores (MIVCs) trace a property to a minimal set of model elements nec-
essary for constructing a proof, and can help to explain why a property
is true of a model. In addition, the traceability information provided by
MIVCs can be used to perform a variety of engineering analysis such as
coverage analysis, robustness analysis, and vacuity detection. The more
MIVCs are identified, the more precisely such analyses can be performed.
Nevertheless, a full enumeration of all MIVCs is in general intractable
due to the large number of possible model element sets. The bottleneck
of existing algorithms is that they are not guaranteed to emit minimal
IVCs until the end of the computation, so returned results are not known
to be minimal until all solutions are produced.

In this paper, we propose an algorithm that identifies MIVCs in an on-
line manner (i.e., one by one) and can be terminated at any time. We
benchmark our new algorithm against existing algorithms on a variety
of examples, and demonstrate that our algorithm not only is better in
intractable cases but also completes the enumeration of MIVCs faster
than competing algorithms in many tractable cases.

Keywords: Inductive Validity Cores, SMT-based model checking, In-
ductive proofs, Traceability, Proof cores

1 Introduction

Symbolic model checking using induction-based techniques such as IC3/PDR [9],
k-induction [24], and k-liveness [8] can be used to determine whether properties
hold of complex finite or infinite-state systems. Such tools are popular both
because they are highly automated (often requiring no user interaction other
than the specification of the model and desired properties), and also because,
in the event of a violation, the tool provides a counterexample demonstrating a
situation in which the property fails to hold. These counterexamples can be used



both to illustrate subtle errors in complex hardware and software designs [22,
21] and to support automated test case generation [26, 27].

If a property is proved, however, most model checking tools do not provide
additional information. This can lead to situations in which developers have an
unwarranted level of confidence in the behavior of the system. Issues such as
vacuity [17], incorrect environmental assumptions [25], and errors either in En-
glish language requirements or formalization can all lead to failures of “proved”
systems. Thus, even if proofs are established, one must approach verification
with skepticism.

Recently, proof cores [1] have been proposed as a mechanism to determine
which elements of a model are used when constructing a proof. This idea is
formalized by Ghassabani et al. for inductive model checkers [11] as Inductive
Validity Cores (IVCs). IVCs offer proof explanation as to why a property is
satisfied by a model in a formal and human-understandable way. The idea lifts
UNSAT cores [28] to the level of sequential model checking algorithms using
induction. Informally, if a model is viewed as a conjunction of constraints, a
minimal IVC (MIVC) is a set of constraints that is sufficient to construct a
proof such that if any constraint is removed, the property is no longer valid.
Depending on the model and property to be analyzed, there are many possible
MIVCs, and there is often substantial diversity between the IVCs used for proof.
In previous work [11, 23, 13, 12] we have explored several different uses of IVCs,
including:

Traceability: Inductive validity cores can provide accurate traceability matri-
ces with no user effort. Given multiple IVCs, rich traceability matrices [23] can
be automatically constructed that provide additional insight about required vs.
optional design elements.

Vacuity detection: Syntactic vacuity detection (checking whether all subfor-
mulae within a property are necessary for its validity) has been well studied [17].
IVCs allow a generalized notion of vacuity that can indicate weak or mis-specified
properties even when a property is syntactically non-vacuous.

Coverage analysis: Coverage analysis provides a metric as to whether a set of
properties is adequate for the model. Several different notions of coverage have
been proposed [7, 16], but these tend to be very expensive to compute. IVCs
provide an inexpensive coverage metric by determining the percentage of model
atoms necessary for proofs of all properties.

Impact Analysis: Given a single (or for more accurate results, all) MIVCs,
it is possible to determine which requirements may be falsified by changes to
the model. This analysis allows for selective regression verification of tests and
proofs: if there are alternate proof paths that do not require the modified portions
of the model, then the requirement does not need to be re-verified.

Design Optimization: A practical way of calculating all MIVCs allows syn-
thesis tools to find a minimum set of design elements (optimal implementation)
for a certain behavior. Such optimizations can be performed at different levels
of synthesis.



To be useful for these tasks, the generation process must be efficient and the
generated IVC must be accurate and precise (that is, sound and minimal). In
previous work, we have developed an efficient offline algorithm [12] for finding all
minimal IVCs based on the MARCO algorithm for MUSes [18]. The algorithm
is considered offline because it is not until all IVCs have been computed that
one knows whether the solutions computed are, in fact, minimal. In cases in
which models contain many IVCs, this approach can be impractically expensive
or simply not terminate.

In this paper, we propose a novel online algorithm for MIVC enumeration.
With this algorithm, solutions are produced incrementally, and each solution
produced is guaranteed to be minimal. Therefore, the algorithm produces at
least some MIVCs even in the case of models for which is a complete MIVC
enumeration intractable. Moreover, the proposed algorithm is often more efficient
then the baseline MARCO also in the case of tractable models. We demonstrate
this via an experimental evaluation.

The rest of the paper is organized as follows. In Section 2 we define all the
necessary notions. Section 3 summarizes the existing techniques. In Section 4
we present our novel algorithm. Section 5 provides an example execution of our
algorithm. Finally, sections 4.6 and 6 cover implementation details and present
experimental results.

2 Preliminaries

A transition system (I, T ) over a state space S consists of an initial state predi-
cate I : S → bool and a transition step predicate T : S×S → bool. The notion of
reachability for (I, T ) is defined as the smallest predicate R : S → bool satisfying
the following formulae:

∀s ∈ S : I(s)⇒ R(s)
∀s, s′ ∈ S : R(s) ∧ T (s, s′)⇒ R(s′)

A safety property P : S → bool holds on a transition system (I, T ) iff it holds
on all reachable states, i.e., ∀s ∈ S : R(s)⇒ P (s). We denote this by (I, T ) ` P .
We assume the transiton step predicate T is equivalent to a conjunction of
transition step predicates T1, . . . , Tn, called top level conjuncts. In such case, T
can be identified with the set of its top level conjuncts {T1, . . . , Tn}. By further
abuse of notation, we write T \ {Ti} to denote removal of top level conjunct Ti

from T , and T ∪ {Tj} to denote addition of top level conjunct Tj to T .

Definition 1. A set of conjuncts U ⊆ T is an Inductive Validity Core (IVC) for
(I, T ) ` P iff (I, U) ` P . Moreover, U is a Minimal IVC (MIVC) for (I, T ) ` P
iff (I, U) ` P and ∀Ti ∈ U : (I, U \ {Ti}) 0 P .

Note, that the minimality is with respect to the set inclusion and not wrt
cardinality. There can be multiple MIVCs with different cardinalities. For an
illustration of the concepts on a particular transition system, please refer e.g. to
the Altitude Switch example [12].



3 Existing Techniques

Consider first a naive enumeration algorithm that explicitly checks each subset
of T for being an IVC and then finds the minimal IVCs using subset inclusion
relation. The main disadvantage of this approach is the large number of checks
since there are exponentially many subsets of T . We briefly describe existing
techniques that can be used to find all MIVCs while checking only a a small
portion of subsets of T for being IVCs. Most of the techniques were inspired
by the MUS enumeration techniques [19, 5, 6] proposed in the area of constraint
processing and applied by Ghassabani et al. [12, 11].

Definition 2 (Inadequacy). A set of conjuncts U ⊆ T is an inadequate set
for (I, T ) ` P iff (I, U) 0 P . Especially, U ⊆ T is a Maximal Inadequate Set
(MIS) for (I, T ) ` P iff U is inadequate and ∀Ti ∈ (T \ U) : (I, U ∪ {Ti}) ` P .

Inadequate sets are duals to inductive validity cores. Each U ⊆ T is either
inadequate set or an inductive validity core. In order to unify the notation, we
use notation inadequate and adequate. Note that especially minimal inductive
validity cores can be thus called minimal adequate sets.

The first property used to improve the naive enumeration algorithm is the
monotonicity of adequacy with respect to the subset inclusion.

Lemma 1 (Monotonicity). If a set of conjuncts U ⊆ T is an adequate set for
(I, T ) ` P than all its supersets are adequate for (I, T ) ` P as well:

∀U1 ⊆ U2 ⊆ T : (I, U1) ` P ⇒ (I, U2) ` P .

Symmetrically, if U ⊆ T is an inadequate set for (I, T ) ` P than all its subsets
are inadequate for (I, T ) ` P as well:

∀U1 ⊆ U2 ⊆ T : (I, U2) 0 P ⇒ (I, U1) 0 P .

Proof. If U1 ⊆ U2 then reachable states of (I, U2) form a subset of the reachable
states of (I, U1).

The monotonicity allows to determine status of multiple subsets of T while
using only a single check for adequacy. For example, if a set U ⊆ T is determined
to be adequate, than all of its supersets are adequate and do not need to be
explicitly checked. Let Sup(U) and Sub(U) denote the set of all supersets and
subsets of U , respectively.

Every algorithm for computing MIVCs has to determine status (i.e adequate
or inadequate) of every subset of T . In order to distinguish the subsets whose
status is already known from those whose status is not known yet, we denote
the former subsets as explored subsets and the latter as unexplored subsets.
Moreover, we distinguish maximal unexplored subsets:

– Umax is a maximal unexplored subset of T iff Umax ⊆ T , Umax is unexplored,
and each of its proper supersets is explored.

A straightforward way to find a (so far unexplored) MIVC of T is to find an
unexplored adequate subset U ⊆ T and turn U into an MIVC by a process called
shrinking. A shrinking procedure iteratively attempts to remove elements from



Algorithm 1: A näive shrinking algorithm

input : (I, U) ` P
output: MIVC for (I, U) ` P

1 for Ti ∈ U do
2 if (I, U \ {Ti}) ` P then U ← U \ {Ti}
3 return U

the set that is being shrunk, checking each new set for adequacy and keeping only
changes that leave the set adequate. A näive example is shown in Algorithm 1.

Ghassabani et al. [12] proposed an algorithm for MIVC enumeration which
is based on the MUS enumeration algorithm MARCO [19]. The algorithm iter-
atively chooses maximal unexplored subsets and tests them for adequacy. Each
maximal subset that is found to be adequate is then shrunk into a MIVC. This
algorithm enumerates MIVCs in an online manner with a relatively steady rate
of the enumeration. However, an evaluation of the algorithm shown that it is
rather slow since the shrinking procedure can be extremely time consuming as
each check for adequacy is in fact a model checking problem.

Therefore, Ghassabani et al. [12] proposed another algorithm which, instead
of computing MIVCs in on online manner, rather computes only approximately
minimal IVCs. In particular, it iteratively picks maximal unexplored subsets,
checks them for adequacy, and turns the adequate subsets into approximately
minimal IVCs using the approximation algorithm IVC UC [11]. IVC UC is able to
identify IVCs which are often very close to actual MIVCs, yet cheap to compute.
This enumeration algorithm computes approximately minimal IVCs, and iden-
tifies MIVCs at the very end of the computation. An experimental evaluation
shows that the latter algorithm computes all MIVCs much faster than the al-
gorithm based on shrinking. However, it does not enumerate MIVCs online and
thus on some benchmarks may produce no MIVCs within a given time limit.

4 Grow-Shrink Algorithm

In this section, we propose a novel algorithm for online MIVC enumeration.
The MIVCs are found using an improved shrinking procedure. Moreover, the
algorithm uses a procedure grow, which is a dual of the shrinking procedure.
The algorithm also maintains the set Unexplored of unexplored subsets.

We can effectively use the set Unexplored for speeding up the shrinking pro-
cedure. When testing the set U \ {Ti} (see line 2 in Algorithm 1) we first check
whether U \ {Ti} is still unexplored. If U \ {Ti} is already explored, then its
status is already known and no test for adequacy is needed.

4.1 Shrink Procedure

In the following observation, we specify which explored subsets can be used to
speed up the shrinking procedure.



Algorithm 2: Approximate grow

input : (I, T ) ` P
input : inadequate U ⊂ T for (I, T ) ` P
input : set Unexplored of unexplored subsets of T
output: approximately maximal inadequate set for (I, T ) ` P

1 M ← a maximal M ∈ Unexplored such that M ⊇ U
2 while (I,M) ` P do
3 MIV C ← IVC UC((I,M), P ) // gets approximately minimal IVC

4 Ti ← choose Ti ∈ (MIV C \ U)
5 M ←M \ {Ti}
6 return M

Observation 1. Let U1, U2 be subsets of T such that U1 is explored, U2 is un-
explored, and U1 ⊂ U2. Then U1 is inadequate for (I, T ) ` P .
Symetrically, if U1, U2 are subsets of T such that U2 is explored, U1 is unexplored,
and U1 ⊂ U2. Then U2 is adequate for (I, T ) ` P .

Proof. If U1 is adequate, then all of its supersets are necessarily adequate. Thus,
if U1 is determined to be adequate, then not just U1 but also all of its super-
sets becomes explored. Since U1 is explored and U2 is unexplored, then U1 is
necessarily an inadequate subset of T .

In other words, during the shrinking procedure, we are guaranteed that when-
ever we find an explored set, this set is inadequate. Thus, as a further optimiza-
tion in our algorithm we try to identify as many inadequate sets as possible
before starting the shrinking procedure. The search for inadequate sets is done
with the help of the grow procedure.

4.2 Grow Procedure

Recall that if a set is determined to be inadequate then all of its subsets are
necessarily also inadequate. Therefore, the larger is the set that is determined
to be inadequate, the more inadequate sets are explored. To identify inadequate
sets as quickly as possible we search for maximal inadequate sets (MISes).

In order to find a MIS, we can find an inadequate set U ⊂ T and use a
process called grow which turns U to a MIS for (I, T ) ` P . The grow procedure
iteratively attempts to add elements from T \ U to U , checking each new set
for adequacy and keeping only changes that leave the set inadequate. Same as
in the case of shrink procedure, we can use the set Explored to avoid checking
sets whose status is already known. However, such grow procedure might still
perform too many checks for adequacy and thus be very inefficient.

Instead, we propose to use a different approach. Algorithm 2 shows a pro-
cedure that, given an inadequate set U for (I, T ) ` P , finds an approximately
maximal inadequate set. It first finds some maximal unexplored set M such that
M ⊇ U and checks it for adequacy. If M is inadequate, then it is necessarily a



Algorithm 3: Solving algorithm

1 Function Solve(I,U ,P):
2 res← CheckAdq(I, U, P )
3 if res = Unknown then
4 approximateWarning ← true // a global variable

5 return (res = Adequate)

MIS (this is a straightforward consequence of Observation 1.) Otherwise, if M
is adequate then it is iteratively reduced until an inadequate set is found.

In particular, whenever M is found to be adequate, the approximative algo-
rithm IVC UC by Ghassabani et al. [11] is used to find an approximately minimal
IVC MIV C of M . MIV C succinctly explains M ’s adequacy. In order to turn M
into an inadequate set, it is reduced by one element from MIV C \U and checked
for adequacy. If M is still adequate then the approximate growing procedure
continues with a next iteration. Otherwise, if M is inadequate, the procedure
finishes.

Proposition 1. Given an unexplored inadequate set U for (I, T ) ` P and a
set Unexplored of unexplored subsets of T , Algorithm 2 returns an unexplored
inadequate subset M of T .

Proof. Let us denote initial M as Minit. Since Minit ⊇ U and M is recursively
reduced only by elements that are not contained in U , then in every iteration
holds that U ⊆ M ⊆ Minit. Since both U, Minit are unexplored, then M is
necessarily also unexplored.

4.3 Solve Procedure

Determining whether a particular subset of elements U ⊂ T can prove a prop-
erty of interest P is as hard as model checking ([11], Theorem 1). Thus, in the
general case, determining whether a set of model elements is an MIVC may not
be possible for model checking problems that are in general undecidable, such as
those involving infinite theories. We assume there is a function CheckAdq that
checks whether or not P is provable for some (I, U). CheckAdq can return Un-
known (after a user-defined timeout) as well as Adequate or Inadequate.
For a given set U , if our implementation is unable to prove the property, we con-
servatively assume that the property is falsifiable and set a global warning flag
approximateWarning to the user that the results produced may be approximate.

4.4 Complete Algorithm

In this section, we describe, how to combine the shrink and grow methods to form
an efficient online MIVC enumeration algorithm. We call the algorithm Grow-
Shrink algorithm. Since knowledge of (approximately) maximal inadequate sub-
sets can be exploited to speed up the shrinking procedure, it might be tempting



Algorithm 4: The Grow-Shrink algorithm

1 Function Init((I, T ) ` P):
2 Unexplored ← P(T ) // a global variable

3 shrinkingQueue ← empty queue // a global variable

4 approximateWarning ← false // a global variable

5 FindMIVCs()

1 Function FindMIVCs():
2 while Unexplored 6= ∅ do
3 Umax ← a maximal set ∈ Unexplored
4 if Solve(I, Umax , P ) then
5 UIVC ← IVC UC((I, Umax ), P )
6 Shrink(UIVC )

7 else
8 Unexplored ← Unexplored \ Sub(Umax )
9 while shrinkingQueue is not empty do

10 U ← Dequeue(shrinkingQueue)
11 Shrink(U)

1 Function Shrink(U):
2 growingQueue ← empty queue
3 for Ti ∈ U do
4 if U \ {Ti} ∈ Unexplored then
5 if Solve(I, U \ {Ti}, P ) then U ← U \ {Ti}
6 else Enqueue(growingQueue, U \ {Ti})
7 output U // Output Minimal IVC

8 UpdateShrinkingQueue(U)
9 Unexplored ← Unexplored \ Sup(U)

10 while growingQueue is not empty do
11 V ← Dequeue(growingQueue)
12 Grow(V )

1 Function Grow(V ):
2 M ← a maximal set ∈ Unexplored such that M ⊇ V
3 while Solve(I,M, P ) do
4 MIVC ← IVC UC((I,M), P )
5 UpdateShrinkingQueue(MIVC )
6 Enqueue(shrinkingQueue,MIVC )
7 Unexplored ← Unexplored \ Sup(MIVC )
8 Ti ← choose Ti ∈ (MIVC \ V )
9 M ←M \ {Ti}

10 Unexplored ← Unexplored \ Sub(M)

1 Function UpdateShrinkingQueue(U):
2 for V ∈ shrinkingQueue do
3 if U ⊆ V then remove V from shrinkingQueue

to first find all MISes. However, this is in general intractable since there can be
up to exponentially many MISes (w.r.t. the size of T ). Instead, we propose to al-
ternate both the shrinking and growing procedures. Note that during shrinking,



we might determine some subsets to be inadequate. Such subsets can be subse-
quently used as seeds for growing. Dually, adequate subsets that are explored
during growing can be later used as seeds for the shrinking procedure.

The pseudocode of our algorithm is shown in Algorithm 4. The computation
of the algorithm starts with an initialisation procedure Init which creates a
global variable Unexplored for maintaining the unexplored subsets and a global
shrinking queue shrinkingQueue for storing seeds for the shrinking procedure.
Then the main procedure FindMIVCs of our algorithm is called.

Procedure FindMIVCs works iteratively. In each iteration, the procedure picks
a maximal unexplored subset Umax and checks it for adequacy. If Umax is inad-
equate, then Umax and all of its subsets are marked as explored. Otherwise, if
Umax is adequate, then the algorithm IVC UC [11] is used to reduce Umax into
an approximately minimal IVC, and subsequently the procedure Shrink is used
to shrink it into a MIVC.

Procedure Shrink works as described in Section 4.1. However, besides shrink-
ing the given set into a MIVC, the procedure has also another purpose. Ev-
ery inadequate set that is found during the shrinking is stored in a queue
growingQueue. At the end of the procedure, all of these inadequate sets are
grown into approximately maximal inadequate sets using the procedure Grow.

Procedure Grow turns a given inadequate set V into an approximately maxi-
mal inadequate set M as described in Section 4.2. The resultant set and all of its
subsets are marked as explored. Moreover, every adequate set found during the
growing is marked as explored and enqueued into shrinkingQueue. The queue
shrinkingQueue is dequeued at the end of each iteration of the main procedure
FindMIVCs and the sets that were stored in the queue are shrunk to MIVCs.

We need to ensure that each result of the shrinking procedure is a fresh
MIVC, i.e. that each MIVC is produced only once. We shrink two kinds of in-
adequate sets in our algorithm: those that result from the inadequate maximal
unexplored subsets, and those that are stored in shrinkingQueue. In the former
case, we always shrunk an unexplored subset UIVC which guarantees that the
resultant MIVC UMIVC is unexplored and thus fresh (if UMIVC is already ex-
plored, then UIVC would be necessarily also explored). However, in the latter
case, all the sets stored in shrinkingQueue are already explored. To guarantee
that shrinking of the sets from shrinkingQueue result only in fresh MIVCs, we
maintain the following invariants of the queue:

I1) For each already produced MIVC M holds that there is no U in the queue
such that M ⊆ U .

I2) There are no two U, V in the queue such that U ⊆ V .

To ensure that the invariants hold, we use the procedure UpdateShrinking-

Queue which given an adequate set U removes from shrinkingQueue all supersets
of U . We call the procedure every time a MIVC is found and every time a set is
added to the queue.

Correctness: The algorithm produces only the MIVCs found by the shrinking
procedure and all of them are fresh, i.e. produced only once. Only subsets whose



status is known are removed from the set Unexplored , thus no MIVC is excluded
from the computation. The algorithm terminates and all MIVCs are found since
the size of Unexplored is reduced after every iteration.

4.5 Symbolic Representation of Unexplored Subsets

Since there are exponentially many subsets of T , it is intractable to represent
the set Unexplored explicitly. Instead, we use a symbolic representation that
is based on a well known isomorphism between finite power sets and Boolean
algebras. We encode T = {T1, T2, . . . , Tn} by using a set of Boolean variables
X = {x1, x2, . . . , xn}. Each valuation of X then corresponds to a subset of T .
This allows us to represent the set of unexplored subsets Unexplored using a
Boolean formula fUnexplored such that each model of fUnexplored corresponds to
an element of Unexplored . The formula is maintained as follows:

• Initially, fUnexplored = True since all of P(T ) are unexplored.

• To remove an adequate set U ⊆ T and all its supersets from the set Unex-
plored we add to fUnexplored the clause

∨
i:Ti∈U ¬xi.

• To remove an inadequate set U ⊆ T and all its subsets from the set Unex-
plored we add to fUnexplored the clause

∨
i:Ti 6∈U xi.

In order to get an element of Unexplored , we ask a SAT solver for a model
of fUnexplored . In particular, to get a maximal unexplored subset, we ask a SAT
solver for a maximal model of fUnexplored . To get a maximal unexplored superset
of U ⊆ T , we fix the truth assignment to the Boolean variables that correspond
to elements in U to True and ask for a maximal model of fUnexplored .

Example 1. Let us illustrate the symbolic representation on T = {T1, T2, T3}. If
all subsets of T are unexplored then fUnexplored = True. If {T1, T3} is classified
as an MIVC and {T1, T2} as a inadequate set, then fUnexplored is updated to
True ∧ (¬x1 ∨ ¬x3) ∧ (x3).

4.6 Implementation

We have implemented the Grow-Shrink algorithm in an industrial model checker
called JKind [10], which verifies safety properties of infinite-state synchronous
systems. It accepts Lustre programs [15] as input. The translation of Lustre
into a symbolic transition system in JKind is straightforward and is similar to
what is described in [14]. Verification is supported by multiple “proof engines”
that execute in parallel, including K-induction, property directed reachability
(PDR), and lemma generation. During verification, JKind emits SMT problems
using the theories of linear integer and real arithmetic, and can use the Z3,
Yices, MathSAT, SMTInterpol, and CVC4 SMT solvers as back-ends. When a
property is proved and IVC generation is enabled, an additional parallel engine
executes the IVC UC algorithm [11] to generate an (approximately) minimal IVC.
To implement our method, we have extended JKind with a new engine that
implements Algorithm 4 on top of Z3. We use the JKind IVC generation engine
to implement the IVC UC procedure in Algorithm 4.
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Fig. 1: The power set from the example execution of our algorithm.

5 Example Execution of the Grow-Shrink Algorithm

The following example explains the execution of our algorithm on a simple in-
stance where the transition step predicate T is given as a conjunction of five
sub-predicates {T1, T2, T3, T4, T5}. We do not exactly state what are the predi-
cates and what is the safety property of interest. Instead, Figure 1 illustrates the
power set of {T1, T2, T3, T4, T5} together with an information about adequacy of
individual subsets. The subsets with solid green border are the adequate subsets,
and the subsets with dashed red border are the inadequate ones. To save space,
we encode subsets as bitvectors, for example the subset {T1, T2, T4} is written
as 11010. There are three MIVCs in this example: 00011, 01001, and 11010.

We illustrate the first iteration of the main procedure FindMIVCs of our
algorithm. Initially, all subsets are unexplored, i.e. fUnexplored = True and the
queue shrinkingQueue is empty. The procedure starts by finding a maximal
unexplored subset and checking it for adequacy. In our case, Umax = 11111
is the only maximal unexplored subset and it is determined to be adequate.
Thus, the algorithm IVC UC is used to compute an approximately minimal IVC
UIVC = 01101 which is then shrunk to a MIVC 01001.

During the shrinking, sets 00101, 01001, and 01000 are subsequently checked
for adequacy and determined to be inadequate, adequate, and inadequate, re-
spectively. The set 01001 is the resultant MIVC, thus the formula fUnexplored

is updated to fUnexplored = True ∧ (¬x2 ∨ ¬x5). The other two sets, 00101 and
01000, are enqueued to the growingQueue and grown at the end of the procedure.

We first grow the set 00101. Initially, the procedure Grow picks M = 10111
as the maximal unexplored superset of 00101, and checks it for adequacy. It is
adequate and thus, an approximately minimal IVC MIVC = 00011 is computed,
enqueued to shrinkingQueue, and formula fUnexplored is updated to fUnexplored =
True ∧ (¬x2 ∨ ¬x5) ∧ (¬x4 ∨ ¬x5). Then, M is (based on MIVC ) reduced to
M = 10101 and checked for adequacy. It is found to be inadequate, thus formula
fUnexplored is updated to fUnexplored = True∧(¬x2∨¬x5)∧(¬x4∨¬x5)∧(x2∨x4),
and the procedure terminates.

The growing of the set 01000 results into an approximately maximal inad-
equate subset 01110. Moreover, an approximately minimal IVC 11110 is found



during the growing and enqueued into shrinkingQueue. The formula fUnexplored

is updated to fUnexplored = True ∧ (¬x2∨¬x5)∧ (¬x4∨¬x5)∧ (x2∨x4)∧ (¬x1∨
¬x2 ∨ ¬x3 ∨ ¬x4) ∧ (x1 ∨ x5).

After the second grow, the procedure Shrink terminates and the main proce-
dure FindMIVCs continues. The queue shrinkingQueue contains two sets: 00011,
11110, thus the procedure now shrinks them. During shrinking the set 00011,
the algorithm would attempt to check the sets 00001 and 00010 for adequacy,
however since both these are already explored, the set 00011 is identified to be
a MIVC without performing any adequacy checks. The procedure FindMIVCs

would now shrink also the set 11110, thus empty the queue shrinkingQueue, and
continue with a next iteration.

6 Experiment

We are interested in examining the performance of algorithms to compute min-
imal IVCs. We examine three algorithms: Offline MARCO, the algorithm
from [12], Online MARCO, a variant of the algorithm from [12] that performs
a shrink step prior to returning a solution to ensure minimality, and Grow-
Shrink, the algorithm described in this paper. We investigate the following
research questions: (RQ1:) For the large models where the complete MIVC enu-
meration is intractable, how many MIVCs are found within the given time limit?
(RQ2:) For the tractable models, i.e. models in which all MIVCs are found, how
much time is required to complete the enumeration of MIVCs? Finally, we are
interested in how many solver calls are necessary for the enumeration. Thus,
we add (RQ3:) What is the (average) number of solver calls with result ade-
quate/inadequate required by evaluated online algorithms to produce individual
MIVCs?

Experimental Setup : We start from a benchmark suite that is a superset of the
benchmarks used in [12]. This suite contains 660 models, and includes all models
that yield a valid result (530 in total) from previous Lustre model checking
papers [14, 20] and 130 industrial models yielding valid results derived from an
infusion pump system [22] and other sources [20, 4]. As this paper is concerned
with analysis problems involving multiple MIVCs, we include only models that
had more than 4 MIVCs (46 models in total). To consider problems with many
IVCs, we took those models and mutated them, constructing 20 mutants for
each model. We added the mutants that still yielded valid results and have
more than 5 MIVCs (384 in total) back to the benchmark suite. Thus, the final
suite contains 430 Lustre models. The original benchmarks and our augmented
benchmark are available from [3].

For each test model, we configured JKind to use the Z3 solver and the “fastest”
mode of JKind (which involves running the k-induction and PDR engines in
parallel and terminating when a solution is found). The experiments were run
on a 3.50GHz Intel(R) i5-4690 processor 16 GB memory machine running Linux
with a 30 minute timeout. All experimental data is available online [2].
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6.1 Experimental Results

In this section, we examine the experimental results to address the research
questions.

RQ1 and RQ2: Data related to the first two research questions is shown in
Figures 2 and 3. Figure 2 describes the number of MIVCs found be the two
online algorithms in the intractable benchmarks, i.e. the benchmarks where the
algorithms did not complete the computation within the time limit. There are 33
such benchmarks. The Grow-Shrink algorithm substantially outperforms Online
MARCO in the majority of the benchmarks, finding an average of 55% additional
MIVCs.

Figure 3 describes the time for each algorithm needed to complete the com-
putation in the case of 397 tractable benchmarks. We see that the performance
of the Grow-Shrink algorithm is very similar to Offline MARCO, but as previ-
ously discussed, has the advantage of returning guaranteed MIVCs, rather than
approximate MIVCs. It is much faster than the Online MARCO algorithm.

RQ3: For RQ3, we examined the number of required calls to the solver per
MIVC. For this question, we used the 33 models that contained a large number
of MIVCs (>70) in order to show the solver efficiency as the number of MIVCs
increased. A point with coordinates (x, y) states that the algorithm needed to
perform y solver calls (on average) in order to produce (find) the first x MIVCs.
We grouped the calls in terms of the number of calls that returned adequate vs.
inadequate results. It is evidenced by the results in Figure 4, the new algorithm
improves upon Online MARCO as the number of MIVCs becomes larger.

The improvement in the number of inadequate calls is due the novel shrinking
and growing procedures. Each (approximately) maximal inadequate subset found
by the growing procedure allows to save (up to exponentially) many inadequate
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Fig. 4: Average number of performed adequacy checks required to produce indi-
vidual MIVCs. Note that Figure (b) is in a log scale.

calls during subsequent executions of the shrinking procedure. Indeed, the Grow-
Shrink algorithm performed on average only 353 inadequate calls to output the
first 70 MIVCs, whereas the online MARCO needed to perform 7775 calls to
output the same number of MIVCs.

The improvement in the number of adequate calls is not so significant as in
the case of inadequate calls. Yet, since the adequate calls are usually much more
time consuming than inadequate ones, even a slight saving in the number of
adequate calls might significantly speed up the whole computation. The Grow-
Shrink algorithm saves adequate calls due to the usage of the shrinking queue and
due to the invariants that are maintained by the queue. In particular, shall two
comparable sets appear in the queue, only the smaller is left. Thus, the algorithm
avoids shrinking of relatively large sets and saves some adequate calls.

7 Conclusion

In this paper, we have presented an online algorithm, called Grow-Shrink algo-
rithm, for computation of minimal Inductive Validity Cores (MIVCs). The new
algorithm substantially outperforms previous approaches. As opposed to the Of-
fline MARCO algorithm in [12], it is guaranteed to produce minimal IVCs. As
opposed to a näive extension Online MARCO, the new algorithm is substan-
tially faster and requires fewer solver calls as the number of MIVCs increases.
We believe that this new algorithm will substantially increase the applicability of
software engineering tasks that require MIVCs. In the future, we hope to exam-
ine parallel computation of MIVCs using a variant of this algorithm to further
increase scalability.
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