
Faculty of Informatics
Masaryk University

} w��������
��
Æ������������ !"#$%&'()+,-./012345<yA|~ LxB{

MINIMAL SETS OVER
A MONOTONE PREDICATE:

ENUMERATION AND COUNTING

Jaroslav Bendík
PHD THESIS

Brno, 2020

Advisor: Ivana Černá, Masaryk University, Brno
Reviewer #1: Nikolaj Bjørner, Microsoft Research, Redmond
Reviewer #2: João Marques-Silva, IRIT/CNRS, Toulouse

The thesis was successfully defended on the 22nd of March, 2021. This is a revised
version that reflects comments provided by the reviewers. The complete archive of the
thesis, including the reviews, is available at https://is.muni.cz/th/y4v8m/?lang=en.

https://is.muni.cz/th/y4v8m/?lang=en

Acknowledgements

There are many people who supported me during my studies and
who deserve my gratitude. Big thanks go to my advisor, Ivana, who
guided my steps on the academic ground already since my bachelor
studies. Not only she provided me with all the necessary adminis-
trative, funding, and other support I needed, but she also taught me
how to be a good researcher. Moreover, she was always willing to
discuss with me both academic and personal life matters, and thus I
can call her both my advisor and my friend.

I am equally grateful to Jiřík, who allowed me to participate in
two European research projects where I had the opportunity to col-
laborate with research teams from both academy and industry. Even
more than the research and academic-related stuff, I enjoyed friendly
conversations on numerous topics we had on a daily basis. Also, I
am thankful for Jiřík’s endeavor to teach me how to play squash de-
spite my constant injuries; I hope one day we will get the chance to
play again.

I also want to thank Strejda for numerous friendly discussions
and for both life and academic pieces of advice he gave me. To
Nikola, Mike, and Kuldeep, I am grateful for fruitful cooperation
on several research projects and for sharing with me their academic
and other experiences. To all members of the ParaDiSe laboratory,
both present and former, I am grateful for creating a friendly and
inspiring working atmosphere.

Finally, it would be hardly possible to finish my studies without
being supported by my family. In particular, I am grateful to my wife
who was always willing to hear me out when I needed it. She was
never angry with me when I was chasing a deadline and devoted all
my days and nights to work instead of spending my time with her.
Moreover, she always cheered me up when I was not in the mood. I
am also thankful to my son since he was the one who finally made
me change my daily schedule and strictly separate the working and
non-working hours. Last but not least, I am grateful to my parents
since they always supported me, offered me a shelter I can return to,
and encouraged me in everything reasonable I wanted to do.

Abstract

In many areas of computer science, we are given a reference set C
and a monotone predicate P : PpCq Ñ Bool. The monotonicity means
that if PpNq � True then PpMq � True for every N � M � C. The
goal is to identify the Minimal Subsets of C satisfying the Monotone
Predicate (MSMPs). For instance, assume that C is an unsatisfiable
set of Boolean clauses and PpNq � True iff N � C is unsatisfiable. In
this case, the MSMPs are the minimal unsatisfiable subsets (MUSes) of
C which are often used during an analysis of unsatisfiable Boolean
formulas. The contribution of the thesis is the following.

In the first part, we propose two domain agnostic algorithms for
MSMP enumeration, i.e. algorithms that can be applied for any par-
ticular instance of MSMPs. A natural role of domain agnostic algo-
rithms is to serve as ready-to-use solutions for any new instance of
MSMPs that might arise.

In the second part, we focus on the particular instance of MSMPs
where the input set C is a set of Boolean clauses and the predicate P
is the Boolean unsatisfiability. We propose a novel algorithm for enu-
meration of MUSes of C. Moreover, we propose a novel algorithm
for enumeration of maximal satisfiable subsets (MSSes) of C.

In the third part, we examine the problem of counting the MUSes
and MSSes of C. The existing approaches for MUS/MSS counting
rely on complete MUS/MSS enumeration, however, for instances
with many MUSes/MSSes, the complete enumeration is often prac-
tically intractable. We present the very first MUS and MSS count-
ing algorithms that determine the MUS and MSS count, respectively,
without explicit MUS and MSS enumeration.

In the fourth part, we study another instance of MSMPs called
minimal inductive validity cores (MIVCs). The input is a transition
system and a safety property satisfied by the system, i.e., a set of
unreachable unsafe states. The transition relation of the system is
encoded as a conjunction of a set tT1, . . . , Tnu of transition step pred-
icates. An MIVC of the system is a minimal subset of the predicates
that need to be left in the system to satisfy the safety property. We
propose a novel MIVC enumeration algorithm.

In the last part, we are given as an input a timed automaton (TA),
a set C of clock constraints that restrict the transitions of the TA, and
a set L of unreachable locations of the TA. Our goal is to identify
a minimal sufficient reduction of the TA, i.e,. a minimal subset of the
clock constraints C that needs to be relaxed to make L reachable.

Contents

1 Introduction 11
1.1 Structure of the Thesis 15

1.2 Author’s Publications and His Contribution 16

2 Preliminaries 21
2.1 Propositional Formulae 21

2.2 Minimal and Maximal Sets over a Monotone Predicate 23

2.3 General Properties of Minimal and Maximal Sets over
a Monotone Predicate 25

2.4 Related Work . 33

I Domain Agnostic MUS Enumeration 35

3 The Role and Applications of Domain Agnostic MUS Enu-
meration Algorithms 37
3.1 Requirements Analysis 38

3.2 Formal Equivalence Checking 40

3.3 Safety Properties Checking 40

3.4 Worst-Case Execution Time Analysis 42

4 Domain Agnostic MUS Enumeration 45
4.1 Notation . 45

4.2 Seed-Shrink Scheme . 46

4.3 TOME . 47

4.4 ReMUS . 52

4.5 Related Work . 55

4.6 MUST: A Domain Agnostic MUS Enumeration Tool . . 60

4.7 Experimental Evaluation 64

4.8 Discussion About Results And Recommendations . . . 70

II MUS and MSS/MCS Enumeration in the Boolean CNF
Domain 73

5 Boolean CNF MUS Enumeration 75
5.1 Notation . 76

5.2 Algorithm . 76

5.3 Related Work . 84

5.4 Experimental Evaluation 85

8

6 Boolean CNF MSS and MCS Enumeration 89
6.1 Notation . 90

6.2 Algorithm . 91

6.3 Related Work . 99

6.4 Experimental Evaluation 101

III MUS and MSS/MCS Counting in the Boolean CNF
Domain 107

7 Boolean CNF MUS Counting 109
7.1 Preliminaries and Problem Formulation 111

7.2 Related Work . 114

7.3 AMUSIC: A Hashing-Based MUS Counter 114

7.4 Experimental Evaluation 126

7.5 Summary and Future Work 130

8 Boolean CNF MSS and MCS Counting 131
8.1 Prelimilaries and Problem Formulation 133

8.2 Related Work . 133

8.3 Counting the Number of MSSes 135

8.4 Experimental Evaluation 142

8.5 Summary and Future Work 144

IV Minimal Inductive Validity Cores 147

9 Minimal Inductive Validity Cores 149
9.1 Preliminaries . 151

9.2 Related Work . 153

9.3 Algorithm . 154

9.4 Implementation . 160

9.5 Example Execution . 160

9.6 Experimental Evaluation 161

9.7 Summary and Future Work 164

V Minimal Sufficient Reductions 165

10 Relaxing Timed Automata For Reachability 167
10.1 Preliminaries . 169

10.2 Minimal Sufficient (D,I)-Reductions 172

10.3 Synthesis of Relaxation Parameters 179

10.4 Case Study . 181

10.5 Summary and Future Work 184

Bibliography 187

List of Definitions

2.1 Definition (minimal model) 22

2.2 Definition (maximal model) 22

2.3 Definition (unsat core) 23

2.4 Definition (model extension) 23

2.5 Definition (monotone predicate) 23

2.6 Definition (P1-minimal, MSMP) 23

2.7 Definition (P0-maximal) 23

2.8 Definition (critical element) 26

2.9 Definition (conflicting element) 26

2.10 Definition (minimal unexplored subset) 27

2.11 Definition (maximal unexplored subset) 27

2.12 Definition (minable critical) 28

2.13 Definition (minable conflicting) 29

4.1 Definition (MUS) . 45

4.2 Definition (MSS) . 45

4.3 Definition (MCS) . 46

5.1 Definition (operation zz) 81

5.2 Definition (units, violated) 81

6.1 Definition (conflict extension) 98

8.1 Definition (wrapper and remainder) 135

9.1 Definition (IVC, MIVC) 151

9.2 Definition (inadequacy, MIS) 151

10.1 Definition (timed automata) 169

10.2 Definition (LTS semantics for TA) 169

10.3 Definition (constraint-relaxation) 171

10.4 Definition ((D, I, r)-relaxation) 171

10.5 Definition (MSR) . 173

10.6 Definition (critical constraint) 174

10.7 Definition (reduction core) 174

1
Introduction

In various areas of computer science, such as requirements analysis,
model checking, or formal equivalence checking, the following situ-
ation arises. We are given a set of constraints with a goal to decide
whether the set of constraints is satisfiable, i.e., whether all the con-
straints can hold simultaneously. In case the given set is shown to
be unsatisfiable, we might be interested in analyzing the unsatisfia-
bility. Identification of minimal unsatisfiable subsets (MUSes) of the
unsatisfiable set of constraints is a kind of such analysis.

In the requirements analysis, constraints represent the require-
ments on the system that is being developed, and checking for satis-
fiability means checking whether all the requirements can be imple-
mented at once. If the set of requirements is unsatisfiable, an identi-
fication of MUSes helps to identify and fix conflicts among require-
ments [Barnat et al., 2016]. In some model checking approaches, e.g.,
the counterexample-guided abstraction refinement (CEGAR) [Clarke
et al., 2000], an unsatisfiable set of constraints may arise as a result
of the abstraction’s overapproximation. In such a case, the extraction
of MUSes leads to a better refinement of the overapproximation [An-
draus et al., 2008].

Besides the problems defined in terms of constraints and satisfi-
ability, there are many problems with the same underlying struc-
ture, however, using different terminology. For example, see the
problems of finding minimal correction subsets [Bailey and Stuckey,
2005], minimal independent supports [Ivrii et al., 2016], minimal incon-
sistent subsets [Barnat et al., 2016], or minimal strongly inconsistent pro-
grams [Mencía and Marques-Silva, 2020]. In general, in all these
problems, we are given on input a set C of elements and a mono-
tone predicate P : PpCq Ñ Bool that classifies every subset of C. The
monotonicity means that if PpNq � True then PpN1q � True for ev-
ery N � N1 � C. The goal is to identify the Minimal Subsets of
C satisfying the Monotone Predicate (MSMPs) [Marques-Silva et al.,
2013b, 2017]. For instance, in the cases of MUSes, the set C contains
the constraints (e.g., Boolean formulas) and the predicate P holds for
unsatisfiable subsets of C.

In this thesis, we deal with several functional problems that can be
formulated in the terms of minimal sets over a monotone predicate.
In particular, our research focuses on the following five areas.

12 minimal sets over a monotone predicate: enumeration and counting

Domain Agnostic MUS Enumeration In the first part of the thesis,
we focus on the subclass of MSMPs where we are given an unsat-
isfiable set C of constraints with the goal to enumerate the minimal
unsatisfiable subsets (MUSes) of C. Perhaps most of the existing
applications of MUSes work either with Boolean (SAT) or SMT con-
straints; these types of constraints arise, for example, in the CEGAR
workflow or in the area of constraint processing. In software require-
ments, the most common constraints are those expressed in some
temporal logic like Linear Temporal Logic (LTL) [Pnueli, 1977], Met-
ric Temporal Logic (MTL) [Koymans, 1990], or Computation Tree
Logic (CTL) [Clarke and Emerson, 1981].

Since the list of constraint domains in which MUS enumeration
finds an application is quite long and new applications still arise,
there is a desire for domain agnostic MUS enumeration algorithms.
Such algorithms can be used in an arbitrary constraint domain, and
thus serve as ready-to-use solutions for any constraint domain where
MUSes might eventually find an application. A domain agnostic al-
gorithm cannot directly exploit domain specific properties of partic-
ular constraint domains. However, there are some properties that are
common for almost all constraint domains where MUSes find appli-
cations. For example, the evaluation of the monotone predicate, i.e.,
performing the satisfiability checks, is usually very expensive (often
NP-complete or harder). Thus, domain agnostic MUS enumeration
algorithms should tend to minimize the number of performed satis-
fiability checks.

In this thesis, we present two domain agnostic MUS enumeration
algorithms that tend to reduce the number of performed checks by
directly exploiting general properties of MUSes, e.g., the monotonic-
ity of the satisfiability function, and indirectly via domain specific
black-box subroutines. We show, via an experimental evaluation in
multiple constraint domains, that our algorithms are competitive or
even superior to other contemporary approaches.

MUS and MSS Enumeration in the Boolean CNF Domain In the
second part of the thesis, we focus on the particular instance of
MUSes where we are given on input an unsatisfiable set C of Boolean
clauses, or equivalently, an unsatisfiable Boolean formula in the con-
junctive normal form (CNF formula). The goal is to enumerate all
MUSes of C. The application areas of Boolean CNF MUS identifi-
cation include for example ontologies debugging [Arif et al., 2016],
diagnosis [Mu, 2019], spreadsheet debugging [Jannach and Schmitz,
2016], constrained counting and sampling [Ivrii et al., 2016], formal
equivalence checking [Cohen et al., 2010], and the like.

Many of contemporary MUS enumeration algorithms implement
a seed-shrink scheme. During their computation, the algorithms grad-
ually explore individual subsets of the input set C of clauses. Ex-
plored subsets are those, whose satisfiability has been already deter-
mined by the algorithm, and unexplored are the others. To find each
single MUS, a seed-shrink algorithm first identifies a seed, i.e., an un-
explored unsatisfiable subset of C. Subsequently, the seed is shrunk

introduction 13

to an MUS using a single MUS extraction procedure. In general, the
algorithms identify a seed by repeatedly picking and checking un-
explored subsets for satisfiability (via a SAT solver), until they find
an unsatisfiable one. The difference between the algorithms is in
which subsets they check for satisfiability, and also how exactly they
perform the single MUS extraction.

In this thesis, we propose a novel MUS enumeration algorithm
that is based on the seed-shrink scheme. In a significant departure
from the contemporary seed-shrink approaches, our algorithm iden-
tifies a vast majority of seeds via a cheap (polynomial) deduction
technique. Consequently, our algorithm is much more frugal in the
number of performed satisfiability checks, which allows it to outper-
form other contemporary solutions.

Moreover, we propose a novel algorithm for enumeration of max-
imal satisfiable subsets (MSSes) of a given unsatisfiable set of Boolean
clauses. MSSes are natural counter-part of MUSes, and they also
find applications during various tasks such as model-based diagno-
sis [Ben-Eliyahu and Dechter, 1993], axiom pinpointing [Arif et al.,
2015a], or MaxSAT solving [Marques-Silva et al., 2013a]. Similarly to
our MUS enumeration algorithm, our MSS enumeration algorithm
employs a novel deduction technique that allows it to significantly
reduce the number of performed satisfiability checks during the MSS
enumeration.

MUS and MSS Counting in the Boolean CNF Domain Yet an-
other problem we focus on is counting the number of MUSes and/or
MSSes of a given set C of Boolean clauses. Current applications of
MUS and MSS counting include mainly various inconsistency met-
rics for general propositional knowledge bases [Thimm, 2018, Hunter
and Konieczny, 2008, Mu, 2019]. Compared to the problems of single
MUS extraction and MUS enumeration that have been extensively
studied in the past two decades, the research on MUS and MSS
counting is still in its nascent stage. The contemporary approach is
to simply enumerate all MUSes (MSSes). However, since the number
of MUSes (MSSes) can be exponential in the number of clauses in C,
the complete MUS (MSS) enumeration is often practically intractable
within a reasonable time limit. In this context, one wonders: whether
it is possible to design a scalable MUS (MSS) counter that does not rely on
explicit MUS (MSS) enumeration.

The thesis provides an affirmative answer to the above question.
In particular, we present a probabilistic MUS counter that takes as
an input a CNF formula C, a tolerance parameter ε, a confidence
parameter δ, and it returns an estimate guaranteed to be within
p1 � εq-multiplicative factor of the exact count with confidence at
least 1 � δ. Crucially, if C contains n clauses, our algorithm ex-
plicitly identifies only Oplog n � logp1{δq � pεq�2q many MUSes even
though the number of MUSes can be exponential in n. As for MSSes,
we introduce a reduction of the exact MSS counting problem to the
problem of projected propositional model counting. The reduction
allows us to exploit recent advances in the design of efficient compo-

14 minimal sets over a monotone predicate: enumeration and counting

nent caching-based projected model counting techniques. We exper-
imentally show that both our MUS and MSS counting approaches
scale much better than contemporary MUS and MSS enumeration
algorithms.

Proof Explanation in Symbolic Model Checking An interesting in-
stance of minimal sets over a monotone predicate emerges in the
area of symbolic model checking. Automated model checking tech-
niques such as IC3/PDR [Eén et al., 2011], k-induction [Sheeran et al.,
2000], and k-liveness [Claessen and Sörensson, 2012] can be used to
determine whether safety properties hold of finite or even infinite-
state systems. Moreover, if a safety property is violated in a system,
these techniques provide a counter-example, i.e. a trace in the sys-
tem, demonstrating a situation in which the property fails to hold.
However, if a property is proved to hold, most model checking tools
do not provide any human-readable explanation of why the property
holds. Consequently, developers might have an unwarranted level
of confidence in the behavior of the system, and issues such as vacu-
ity [Kupferman and Vardi, 2003] or incorrect environmental assump-
tions [Whalen et al., 2007] can lead to failures of “proved” systems.

To explain why a safety property holds in a system in a formal,
yet human-readable way, Ghassabani et al. proposed the concept
of Minimal Inductive Validity Cores (MIVCs) [Ghassabani et al., 2016].
They assume that the transition relation of the system is encoded
as a conjunction of a set T � tT1, . . . , Tnu of transition step pred-
icates. Intuitively, the addition of each individual transition step
predicate to the system makes some states to be unreachable. An
MIVC of the system is a minimal subset T1 of T such that the system
induced by the transition steps predicates T1 still satisfies the safety
property. Enumeration of MIVCs can be used, e.g., during coverage
analysis, optimizing logic synthesis, impact analysis, or robustness
analysis [Ghassabani et al., 2017b]. In the thesis, we propose a novel
MIVC enumeration algorithm and experimentally compare it with
other contemporary approaches.

Relaxing Timed Automata for Reachability In the last part of the
thesis, we introduce a novel instance of minimal sets over a mono-
tone predicate, called minimal sufficient reductions (MSRs), that find
an application in the area of timed automata. A timed automaton
(TA) is a finite automaton extended with a set of real-time variables,
called clocks, which capture the time and control/restrict the behav-
ior of the automaton. Examples of TA models of time-critical systems
include, e.g., scheduling of real-time systems [Fehnker, 1999, David
et al., 2009, Guan et al., 2007], medical devices [Kwiatkowska et al.,
2015, Jiang et al., 2014], and rail-road crossing systems [Wang, 2004].

Contemporary model-checking tools, such as UPPAAL [Behrmann
et al., 2006] or IMITATOR [André et al., 2012], allow for verifying
whether a given TA satisfies a system specification. Unfortunately,
during the system design phase, the system information is often in-
complete. A designer is able to build a TA with a correct structure,
i.e., correctly capturing locations and transitions of the system, how-

introduction 15

ever, the exact clock constraints that enable/trigger the transitions
are uncertain. Consequently, the produced TA often does not meet
the specification and needs to be refined.

In case of violation of a universal property, such as safety or un-
avoidability, that needs to hold on each trace of the system, a model
checker provides a counter-example, i.e., a trace on which the prop-
erty is not satisfied. Subsequently, the counter-example can be used
to refine the model. However, in case of violation of an existential
property, e.g., reachability, that needs to hold on a trace of the sys-
tem, the model checker is not able to provide any information that
would help the designer to correct the TA.

In the thesis, we propose a novel technique for relaxing timed
automata for reachability properties. In particular, given a timed
automaton A, we first identify a minimal sufficient reduction (MSR)
of A, i.e., a minimal subset S of clock constraints of A that need to
be relaxed to satisfy the reachability property. In the second step,
we employ either linear programming or a parameter synthesis tool
to actually find a relaxation of S that leads to a satisfaction of the
reachability property.

1.1 Structure of the Thesis

Chapter 2 defines the basic notation and concepts used throughout
the thesis. Especially, it formally defines the general concept of mini-
mal sets over a monotone predicate (MSMPs) and states several well-
known observations and techniques related to MSMP identification.
The rest of the thesis is divided into the five parts as discussed above.

In the first part, we focus on the domain agnostic MUS enumera-
tion. In particular, Chapter 3 provides a detailed description of sev-
eral applications of MUSes taken from various constraint domains.
The goal of the chapter is to motivate the development of domain ag-
nostic MUS enumeration algorithms, and it also demonstrates how
different the individual constraint domains can be. In Chapter 4,
we present our two novel domain agnostic MUS enumeration algo-
rithms, called TOME [Bendík et al., 2016b] and ReMUS [Bendík et al.,
2018b], discuss other existing solutions, and provide an exhaustive
experimental evaluation.

In the second part, we focus specifically on the case where we
are given on input an unsatisfiable Boolean formula in CNF, i.e., an
unsatisfiable set of Boolean clauses. Chapter 5 presents our Boolean
CNF MUS enumeration algorithm called UNIMUS [Bendík and Černá,
2020c], and Chapter 6 introduces our Boolean CNF MSS enumeration
algorithm called RIME [Bendík and Černá, 2020b]. Both chapters dis-
cuss also other contemporary MUS and MSS enumeration techniques
and provide an experimental evaluation.

The third part deals with the problems of Boolean CNF MUS and
MSS counting, and it is divided into Chapters 7 and 8. The former
chapter presents our approximate MUS counting algorithm called
AMUSIC [Bendík and Meel, 2020]. The latter chapter introduces our

16 minimal sets over a monotone predicate: enumeration and counting

reduction [Bendík and Meel, 2021] of the exact MSS counting prob-
lem to the problem of projected propositional model counting.

In the fourth part, i.e., Chapter 9, we present our algorithm, called
GROW-SHRINK [Bendík et al., 2018c], for enumerating minimal in-
ductive validity cores (MIVCs). We also provide an overview of other
existing MIVC enumeration techniques and show results of our ex-
perimental evaluation.

The final part of the thesis is formed by Chapter 10 and it intro-
duces the concept of minimal sufficient reductions (MSR) [Bendík et al.,
2021]. We present an algorithm for computing MSRs and we show
how MSRs can be used during the relaxation of timed automata for
reachability properties. We illustrate the usefulness of our approach
on a case study and we compare it with another available timed au-
tomata relaxation technique.

1.2 Author’s Publications and His Contribution

1.2.1 Core of the Thesis

Chapters of the dissertation thesis are based on conference publi-
cations co-authored by me, the author of the thesis. Below, I list
the publications respecting the order of corresponding chapters. I
am the leading and also the corresponding author of all the publi-
cations. Moreover, for each publication, I state my contribution in
percentage. In particular, the contribution to each paper is divided
into three categories: 1) origin of ideas behind the publication and
participation in discussions with co-authors (ideas and discussions), 2)
implementation and evaluation of the proposed methods (implemen-
tation), and 3) work on the text of the paper (text). In each of these
categories, an author’s contribution ranges between 0% and 100%.
The overall contribution of an author is computed as a weighted sum
of the three categories using weights 0.5, 0.25, and 0.25, respectively.1 1 For instance, if an author contributed

to ideas and discussions, implementation,
and text with 70%, 60% and 50%, re-
spectively, then his overall contribution
is 70 � 0.5� 60 � 0.25� 50 � 0.25 � 62.5%.

ISSTA 2017 (doctoral symposium) Jaroslav Bendík
“Consistency Checking in Requirements Analysis” [Bendík, 2017]
My contribution: ideas and discussions 100%, implementation
100%, text 100%, overall contribution 100.0%.

FSTTCS 2016 Jaroslav Bendík, Nikola Beneš, Ivana Černá, and Jiří
Barnat
“Tunable Online MUS/MSS Enumeration” [Bendík et al., 2016b]
My contribution: ideas and discussions 30.0%, implementation
100%, text 50.0%, overall contribution 52.5%.

ATVA 2018 Jaroslav Bendík, Ivana Černá, and Nikola Beneš
“Recursive Online Enumeration of All Minimal Unsatisfiable Sub-
sets” [Bendík et al., 2018b]
My contribution: ideas and discussions 50.0%, implementation
100%, text 50.0%, overall contribution 62.5%.

introduction 17

LPAR 2018 Jaroslav Bendík and Ivana Černá
“Evaluation of Domain Agnostic Approaches for Enumeration of
Minimal Unsatisfiable Subsets” [Bendík and Černá, 2018]
My contribution: ideas and discussions 60.0%, implementation
100%, text 80.0%, overall contribution 75.0%.

TACAS 2020 Jaroslav Bendík and Ivana Černá
“MUST: Minimal Unsatisfiable Subsets Enumeration Tool” [Bendík
and Černá, 2020a]
My contribution: ideas and discussions 75.0%, implementation
100%, text 95.0%, overall contribution 86.2%.

CP 2020 Jaroslav Bendík and Ivana Černá
“Replication-Guided Enumeration of Minimal Unsatisfiable Sub-
sets” [Bendík and Černá, 2020c]
My contribution: ideas and discussions 80.0%, implementation
100%, text 80.0%, overall contribution 85.0%.

LPAR 2020 Jaroslav Bendík and Ivana Černá
“Rotation Based MSS/MCS Enumeration”
[Bendík and Černá, 2020b]
My contribution: ideas and discussions 80.0%, implementation
100%, text 80.0%, overall contribution 85.0%.

CAV 2020 Jaroslav Bendík and Kuldeep S. Meel
“Approximate Counting of Minimal Unsatisfiable Subsets” [Bendík
and Meel, 2020]
My contribution: ideas and discussions 50.0%, implementation
100%, text 50.0%, overall contribution 62.5%.

AAAI 2021 Jaroslav Bendík and Kuldeep S. Meel
“Counting Maximal Satisfiable Subsets” [Bendík and Meel, 2021]2 2 The paper was accepted to AAAI’21

after the official submission of the the-
sis and before the defence. In the orig-
inal thesis submission, the paper was
marked as “under a review” without
specifying the conference.

My contribution: ideas and discussions 75.0%, implementation
100%, text 75.0%, overall contribution 81.2%.

SEFM 2018 Jaroslav Bendík, Elaheh Ghassabani, Michael W. Whalen,
and Ivana Černá
“Online Enumeration of All Minimal Inductive Validity Cores”
[Bendík et al., 2018c]
My contribution: ideas and discussions 50.0%, implementation
50.0%, text 50.0%, overall contribution 50.0%.

TACAS 2021 Jaroslav Bendík, Ahmet Sencan, Ebru Aydin Gol, and
Ivana Černá
“Timed Automata Relaxation for Reachability” [Bendík et al., 2021]3 3 The paper was accepted to TACAS’21

after the official submission of the the-
sis and before the defence. In the orig-
inal thesis submission, the paper was
marked as “under a review” without
specifying the conference.

My contribution: ideas and discussions 40.0%, implementation
30%, text 50.0%, overall contribution 40.0%.

A large portion of the text of the thesis and the structure of sev-
eral chapters is adopted from the corresponding conference papers.
However, some of the material was completely rewritten and some
parts were substantially extended. In particular,

18 minimal sets over a monotone predicate: enumeration and counting

• Chapters 1, 2 and 3 are new.

• The description of our domain agnostic MUS enumeration algo-
rithms TOME and ReMUS and our domain agnostic MUS enu-
meration tool MUST (Chapter 4) was completely rewritten to re-
flect various improvements we made since the publication of the
original papers.

• The presentation of our Boolean CNF MUS enumeration algo-
rithm in Chapter 5 is mostly adopted from the corresponding con-
ference paper [Bendík and Černá, 2020c].

• The description of our Boolean CNF MSS/MCS enumeration algo-
rithm RIME in Chapter 6 is mostly adopted from the correspond-
ing paper [Bendík and Černá, 2020b]. However, we provide here
a new experimental evaluation that captures low-level improve-
ments of the implementation of the algorithm we made since the
publication of the original paper. Moreover, we examine more
criteria in the evaluation than in the original experimental evalua-
tion.

• Chapter 7 that presents our MUS counting algorithm adopts a
large portion of the text from [Bendík and Meel, 2020], however, it
is extended by a description of subroutines of our algorithm that
did not appear in the original paper [Bendík and Meel, 2020] (due
to a page limit).

• Chapter 9 that describes our MIVC enumeration approach adopts
a large portion of the text from the corresponding paper [Bendík
et al., 2018c], however, it is extended with illustration of MIVCs in
Lustre programs.

• Chapters 8 and 10 are mostly adopted from the corresponding
papers.

Moreover, the notation, style of plots, figures and algorithms, etc.,
were unified in all chapters. Also, introductions and conclusions of
the individual chapters and sections that discuss related work were
substantially rewritten so that the thesis provides a coherent presen-
tation.

Tools. All algorithms we present in this thesis were implemented
in publicly available tools. I am either the only author or a co-
author of all the tools (as stated in the contribution to the papers
above). In particular, our domain agnostic MUS enumeration al-
gorithms, TOME [Bendík et al., 2016b] and ReMUS [Bendík et al.,
2018b], are implemented in our domain agnostic MUS enumeration
tool MUST [Bendík and Černá, 2020a]4. GROW-SHRINK [Bendík 4 https://github.com/jar-ben/

mustoolet al., 2018c], our algorithm for enumeration of Minimal Inductive
Validity Cores, is available in a development branch5 of the model 5 https://github.com/janetlj/jkind

checker JKind [Gacek et al., 2018]. Our Boolean CNF MUS and
MSS enumeration algorithms UNIMUS [Bendík and Černá, 2020c]
and RIME [Bendík and Černá, 2020b], respectively, are implemented

https://github.com/jar-ben/mustool
https://github.com/jar-ben/mustool
https://github.com/janetlj/jkind

introduction 19

in standalone tools6,7. Similarly, our Boolean CNF MUS and MSS 6 https://github.com/jar-ben/unimus
7 https://github.com/jar-ben/rimecounting algorithms AMUSIC [Bendík and Meel, 2020] and CountMSS,

respectively, are provided as standalone tools8,9. Finally, our ap- 8 https://github.com/jar-ben/amusic
9 https://github.com/jar-ben/

MSSCounting
proach for relaxation of timed automata is implemented in a tool
called Tamus10.

10 https://github.com/jar-ben/tamus

Inter-University Cooperation. Note that some of the research pre-
sented in this thesis was conducted with people from other univer-
sities I established cooperation with. In particular, the algorithm for
MIVC enumeration [Bendík et al., 2018c] was developed mainly dur-
ing my two-week visit of Mike Whalen and Elaheh Ghassabani at the
University of Minnesota. The research on approximate MUS count-
ing [Bendík and Meel, 2020] was conducted jointly with Kuldeep
Meel during my four-week stay at the National University of Singa-
pore. Follow-up cooperation with dr. Meel led to the development
of the MSS counting technique presented in Chapter 8. Finally, the
research on the relaxation of timed automata (Chapter 10) is joint
work with Ebru Aydin Gol and Ahmet Sencan from the Middle East
Technical University and it was initiated when dr. Gol visited my
advisor at my university.

1.2.2 Other Related Publications

The author during his Ph.D. studies also examined possible gener-
alizations of the problem of MSMP identification via a concept of
an ADAG. An ADAG is a directed acyclic graph annotated with a
Boolean validation function that classifies each vertex of the graph
either as valid or as invalid. A vertex v of a given ADAG is a mini-
mal valid vertex (MVV) if v is valid and every its direct predecessor is
invalid. Symmetrically, one can define maximal invalid vertices. Given
a monotone predicate P over a reference set C, the problem of find-
ing minimal subsets of C satisfying the monotone predicate P can
be straightforwardly mapped to the problem of finding MVVs in an
ADAG. In particular, the graph is induced by the power-set of C
and the validation function corresponds to the monotone predicate
P. When modeling the problem of MSMP identification, the induced
graph has a specific structure of a hypercube graph (the structure
of a power-set). Moreover, the validation function is monotone w.r.t.
the reachability relation since the predicate P is monotone w.r.t. the
subset inclusion relation. The author examined the problem of MVV
identification even in the more general cases where the assumption
about the structure of the graph or the monotonicity assumption is
relaxed. The results were published in the following two papers.

SEFM 2016 Jaroslav Bendík, Nikola Beneš, Jiří Barnat, and Ivana
Černá
“Finding Boundary Elements in Ordered Sets with Application to
Safety and Requirements Analysis” [Bendík et al., 2016a]11 11 In this paper, we focused on find-

ing MVVs in ADAGs that can have a
structure of an arbitrary acyclic directed
graph and the validation function is
monotone w.r.t. the reachability rela-
tion.

My contribution: ideas and discussions 30.0%, implementation
100%, text 50.0%, overall contribution 52.5%.

https://github.com/jar-ben/unimus
https://github.com/jar-ben/rime
https://github.com/jar-ben/amusic
https://github.com/jar-ben/MSSCounting
https://github.com/jar-ben/MSSCounting
https://github.com/jar-ben/tamus

20 minimal sets over a monotone predicate: enumeration and counting

ICSOFT 2018 Jaroslav Bendík, Nikola Beneš, and Ivana Černá
“Finding Regressions in Projects under Version Control Systems”
[Bendík et al., 2018a]12 12 In this paper, we examined the class

of ADAGs where the underlying graph
can be an arbitrary directed acyclic
graph and, moreover, the validation
function does not have to be monotone
w.r.t. the reachability relation. Such
a structure naturally arises for exam-
ple in commit graphs of version con-
trol systems: the vertices correspond to
individual commits and the validation
function classifies the status of individ-
ual commits (e.g., if the commits pass
performance tests).

My contribution: ideas and discussions 50.0%, implementation
100%, text 50.0%, overall contribution 62.5%.

Since the two papers focus on a generalization of the MSMP iden-
tification problem, the algorithms presented in the papers can be
naturally used also for finding MSMPs. However, due to the gen-
eralization, the algorithms cannot fully exploit properties that are
specific for MSMP identification and thus are rather inefficient for
that task. Therefore, the thesis does not discuss the two papers in
more detail.

2
Preliminaries

Given a set X, we use PpXq to denote the power-set of X, and |X| to
denote the cardinality of X. For a pair X, Y of sets, we write X � Y
to denote that X is a subset of Y, and X � Y to denote that X is a
proper subset of Y. In writing, we use “iff” as a shorthand for the
equivalence relation “if and only if”. In proofs of such equivalence
statements, we use ð and ñ to split the two implication directions.
In case of propositional implications, we use the symbols Ð and Ñ
(see Section 2.1).

2.1 Propositional Formulae

Standard propositional logic definitions are used throughout the the-
sis (e.g. [Kleine Büning and Lettmann, 1999]), some of which are in-
troduced in this section. When needed, additional definitions are
introduced in the particular chapters of the thesis.

An atom is a propositional variable. A literal is either a variable
x or its negation x. A propositional formula is defined inductively
over a set of propositional variables and standard logical connectives,
 , ^ and _, as follows:

1. Every atom is a formula.

2. If F is a formula, then the negation p Fq of F is a formula.

3. If F and G are formulae, then the conjunction pF^Gq is a formula.

4. If F and G are formulae, then the disjunction pF_Gq is a formula.

We also use the standard extensions of the inductive definition
using the connectives ofÑ (implication) andØ (equivalence). When
clear from the context, we simply write formula, instead of the full
term propositional formula. Moreover, we use the terms propositional
formula and Boolean formula interchangeably. Parentheses are used in
a formula only when needed for clarity of the presentation (standard
binding priorities are used, i.e., binds more tightly than _ and ^,
_ and ^ bind more tightly than Ñ, and Ñ binds more tightly than
Ø).

Given a formula F, we use VarspFq to denote the set of variables of
F. A truth assignment, also called valuation or variable assignment,

22 minimal sets over a monotone predicate: enumeration and counting

π to a set A of variables is a mapping π : A Ñ tTrue, Falseu. If A �

VarspFq, the value of F w.r.t. π, denoted Fπ , is defined as follows:

1. if F � x where x is a variable, then Fπ � πpxq

2. if F = G then

Fπ �

$&
%

False if Gπ � True

True if Gπ � False

3. if F = G_ H then

Fπ �

$&
%

True if Gπ � True or Hπ � True

False otherwise

4. if F = G^ H then

Fπ �

$&
%

True if Gπ � True and Hπ � True

False otherwise

If Fπ � True, we write π |ù F and say that π satisfies F. We also
call π a satisfying assignment of F or a model of F. In the other case,
when Fπ � False, we write π �|ù F and say that π does not satisfy F. A
formula F is satisfiable if it has a model; otherwise, it is unsatisfiable.

Given a formula F, a truth assignment π to VarspFq can be identi-
fied with the set truespπ, Fq � tx P VarspFq |πpxq � Trueu of variables
that are assigned True. Through the lens of this set representation,
we can define minimal and maximal models of a formula as follows.

Definition 2.1 (minimal model). Given a formula F, a model π of F
is minimal iff there there is no model π1 of F such that truespπ1, Fq �
truespπ, Fq.

Definition 2.2 (maximal model). Given a formula F, a model π of F
is maximal iff there there is no model π1 of F such that truespπ, Fq �
truespπ1, Fq.

A clause is a disjunction of literals l1 _ l2 _ � � � _ ln. A formula F is
in a conjunctive normal form (CNF) iff it is formed by a conjunction
of clauses. We shortly call such formulae CNF formulae. A CNF
formula can be identified with the set of its clauses and a clause can
be identified with the set of its literals. We use the two notations (i.e.,
the set notation and the one using conjunctions and disjunctions)
interchangeably; the currently used notation is always clear from the
context. Note that a truth assignment satisfies a CNF formula iff
it satisfies all clauses of the formula. Similarly, a truth assignment
satisfies a clause iff it satisfies a literal of the clause.

We use the following well-known monotonicity properties of CNF
formulae (see, e.g., [Kleine Büning and Lettmann, 1999]):

Observation 2.1. Let F and G be CNF formulae such that F � G, and
let π be a model of G. Then π is also a model of F. Consequently, if G is
satisfiable then F is also satisfiable.

preliminaries 23

Observation 2.2. Let F and G be CNF formulae such that F � G. If F is
unsatisfiable then G is also unsatisfiable.

The above two observations are widely used in the thesis, how-
ever, since they are well-known, they will not be explicitly referred
to for the sake of simplicity.

Finally, given two CNF formulae C and F with F � C, we ex-
ploit the capabilities of contemporary SAT solvers to provide either
an unsat core of F when F is unsatisfiable, or a model of F and the
corresponding model extension of F w.r.t. C when F is satisfiable:

Definition 2.3 (unsat core). An unsat core of a CNF formula F is an
unsatisfiable subset of F.

Definition 2.4 (model extension). Let C be a CNF formula, F a satisfiable
subset of C, and π a model of F. The model extension of F w.r.t. π and C
is the set E � tc P C |π |ù cu. Note that F � E � C and E is satisfiable
(π is its model).

2.2 Minimal and Maximal Sets over a Monotone Predicate

This section introduces the notion of minimal and maximal sets over
a monotone predicate [Marques-Silva et al., 2013b, 2017]. In general,
we are given a finite set C � tc1, c2, . . . , cnu of elements together with
a monotone predicate P : PpCq Ñ t1, 0u. The monotonicity and the
minimal and maximal sets are defined as follows.

Definition 2.5 (monotone predicate). A predicate P : PpCq Ñ t1, 0u
over a reference set C is monotone iff whenever PpNq � 1, with N � C,
then PpN1q � 1 for every N � N1 � C.

Definition 2.6 (P1-minimal, MSMP). A set N is a P1-minimal subset of
C iff N � C, PpNq � 1, and PpN1q � 0 for every N1 � N. We also refer to
a P1-minimal subset of C as to a minimal subset of C over a monotone
predicate P, shortly MSMP.

Definition 2.7 (P0-maximal). A set N is a P0-maximal subset of C iff
N � C, PpNq � 0, and PpN1q � 1 for every N � N1 � C. We also refer to
a P0-maximal subset of C as to a maximal subset of C over a monotone
predicate P.

Note that the maximality (minimality) concept is the set maximal-
ity (minimality), not maximum (minimum) cardinality as e.g. in the
MaxSAT problem. Consequently, there can be multiple P1-minimal
and P0-maximal subsets of C with different cardinalities. The maxi-
mum number of P1-minimal (and also P0-maximal) subsets of C, is
bounded due to Sperner’s theorem [Sperner, 1928] to

� n
tn{2u
�

where
n � |C|.1 1 Intuitively, this is the width of the

widest row of the power-set PpCq of
C, i.e., the maximum number of pair-
wise incomparable subsets of C w.r.t.
the subset inclusion.

Note that to prove that a set N is a P1-minimal/P0-maximal subset
of C, one does not have to consider all subsets/supersets of N as
witnessed in Observations 2.3 and 2.4.

Observation 2.3. A set N is a P1-minimal subset of C iff N � C, PpNq �
1, and PpNztcuq � 0 for every c P N.

24 minimal sets over a monotone predicate: enumeration and counting

0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111
Figure 2.1: Illustration of the
power-set PpCq from Exam-
ple 2.2. We encode individ-
ual subsets of C as bitvectors,
e.g., tc1, c2, c4u is encoded as
1101. Satisfiable and unsatisfi-
able subsets are drawn in green
and red, respectively. MUSes
and MSSes are filled with a
background color.
Note that due to the monotonic-
ity of the satisfiability predi-
cate, there is a borderline be-
tween satisfiable and unsatis-
fiable subsets. The border-
line can be defined exactly by
the maximal satisfiable or min-
imal unsatisfiable subsets. This
holds for all instances of mini-
mal sets over a monotone pred-
icate.

Proof. ñ: Directly by Definition 2.6.
ð: Assume that PpNztcuq � 0 for every c P N, and that there exists
N1 such that N1 � N with PpN1q � 1 (i.e., N is not P1-minimal).
Since N1 � N, then N1 � Nztcu for some c P N. By the monotonicity
(Definition 2.5), since PpN1q � 1 then PpNztcuq � 1 (contradiction).

Observation 2.4. A set N is a P0-maximal subset of C iff N � C, PpNq �
0, and PpN Y tcuq � 1 for every c P CzN.

Proof. Dually to the proof of Observation 2.3.

We illustrate the concepts of a monotone predicate and P1-minimal
and P0-maximal subsets on several examples.

Example 2.1. Assume that C is a finite set of positive integers, and let
PpNq � 1 iff

°
cPN c ¡ 100 for every N � C. Here, P is monotone on C

since C contains only positive integers. However, if we assume that C can
contain both positive and negative integers, then P is not monotone on C.

Example 2.2. Assume that the set C is a set of Boolean clauses, i.e., a CNF
formula, and the predicate P is defined as PpNq � 1 iff the subset N of
C is unsatisfiable. In such case, the P1-minimal subsets are the minimal
unsatisfiable subsets (MUSes) of C, and the P0-maximal subsets are the
maximal satisfiable subsets (MSSes) of C. In particular, assume that C
contains four clauses: c1 � a, c2 � a, c3 � b, and c4 � a_ b. There
are two MUSes: tc1, c2u, tc1, c3, c4u, and three MSSes: tc1, c4u, tc1, c3u,
tc2, c3, c4u. The situation is illustrated in Figure 2.1.

Example 2.3. Assume that C is a set of Boolean clauses and P is defined as
PpNq � 1 iff the set CzN is satisfiable. In this case, the P1-minimal subsets
are the minimal correction subsets (MCSes) of C, i.e., the minimal sets of
clauses that need to be removed from C to make it satisfiable. In particular,
if C contains the four clauses as in Example 2.2, then there are three MCSes:
tc2, c3u, tc2, c4u, tc1u.

Note that in Examples 2.2 and 2.3 we use the same set C, and that
the P1-minimal subsets from Example 2.3 (i.e., MCSes) are exactly
the complements of the P0-maximal subsets from Example 2.2 (i.e.,
MSSes). This is not a coincidence; it holds in general that maximal
subsets of a set C over a monotone predicate can be expressed as
minimal subsets of C over another monotone predicate:

preliminaries 25

Observation 2.5. Let C be a finite set of elements and P a monotone
predicate over C. Furthermore, let Q be a predicate over C defined as
QpCzNq � 1 iff PpNq � 0 for every N � C. Then Q is monotone, and a
set N is a P0-maximal subset of C iff CzN is a Q1-minimal subset of C.

Proof. We start with the monotonicity of Q. By contradiction, assume
that there are N, N1 such that N � N1 � C, QpNq � 1 and QpN1q � 0.
By the definition of Q, we have PpCzNq � 0 and PpCzN1q � 1, and
since N � N1 we have pCzN1q � pCzNq which contradicts that P is
monotone.
As for the P0-maximal and Q1-minimal equivalence, assume a sub-
set N of C such that N is P0-maximal, however, CzN is not Q1-
minimal. Consequently, either QpCzNq � 0 or there exists N1 such
that pCzN1q � pCzNq and QpCzN1q � 1. The former case contradicts
that PpNq � 0. In the latter case we have PpN1q � 0 which contradicts
that N P0-maximal since N � N1. Dually for the other direction.

Consequently, the concept of minimal subsets that satisfy a mono-
tone predicate allows us to describe the same class of problems as
the concept of maximal subsets that do not satisfy a monotone pred-
icate. Thus, we could restrict ourselves to using only one of the two
concepts. In fact, note that Marques-Silva et al. who pioneered the
study on the general concept of minimal/maximal sets over a mono-
tone predicate [Marques-Silva et al., 2013b, Janota and Marques-
Silva, 2016, Marques-Silva et al., 2017] used only the term of minimal
elements in their definitions (their definition of a minimal set over a
monotone predicate (MSMP) corresponds to our definition of a P1-
minimal subset). However, in some situations, it is more natural to
speak about maximal subsets, and in other situations about minimal
subsets. Hence, we use both the terms in this thesis.

In the rest of this chapter, we summarize several well-known prop-
erties, facts, and techniques related to minimal and maximal sets over
a monotone predicate that are used throughout the thesis. Especially,
we focus on concepts related to enumeration of minimal and maximal
sets over a monotone predicate.

2.3 General Properties of Minimal and Maximal Sets over a
Monotone Predicate

Hereafter, let us use C and P to denote the reference set and the
monotone predicate of interest, respectively. There is a well-known
relationship between P1-minimal subsets and the complements of
P0-maximal subsets of C. The relationship is defined in terms of
minimal hitting sets. Given a collection Ω of sets, a hitting set H of
Ω is a set such that @S P Ω : H X S � H. A hitting set is called
minimal if none of its proper subsets is a hitting set. The following
Observation 2.6, called minimal hitting set duality, was first pointed
out by Reiter [Reiter, 1987] and by de Kleer and Williams [de Kleer
and Williams, 1987].

26 minimal sets over a monotone predicate: enumeration and counting

Observation 2.6 (minimal hitting set duality). A set N is a P1-minimal
subset of C if and only if N is a minimal hitting set of X , where X is the
set of complements of all P0-maximal subsets of C, i.e., X � tX |CzX is
P0-maximalu. Similarly, a set N is a P0-maximal subset of C if and only if
CzN is a minimal hitting set of the set of all P1-minimal subsets of C.

Intuitively, due to the monotonicity of P, a P0-maximal subset N
of C cannot contain any P1-minimal subset of C, and hence the com-
plement of N has to hit every P1-minimal subset of C, and vice versa.
Another widely known concepts are critical and conflicting elements
(sometimes also called transition elements [Belov and Marques-Silva,
2011, Marques-Silva et al., 2013b]).

Definition 2.8 (critical element). Let N be a subset of C such that PpNq �
1. An element c P N is critical for N if PpNztcuq � 0.

Note that if c is a critical element for C then c has to be contained
in every subset C1 of C such that PpC1q � 1 and especially in every
P1-minimal subset of C. The opposite does not have to hold; if N � C
and c is critical for N then c is not necessarily critical for C, i.e., there
can be P1-minimal subsets of C that do not contain c. Furthermore,
note that Observation 2.7 holds.

Observation 2.7. A subset N of C is a P1-minimal subset of C iff every
c P N is critical for N.

Proof. Immediately from Observation 2.3.

Definition 2.9 (conflicting element). Let N be a subset of C such that
PpNq � 0. An element c P CzN is conflicting for N if PpN Y tcuq � 1.

Similarly to the case of critical elements, note that if c is conflicting
for a set N with PpNq � 0, then c is conflicting for every superset N1

of N with PpN1q � 0. Furthermore, Observation 2.8 holds.

Observation 2.8. A subset N of C is a P0-maximal subset of C iff every
c P CzN is conflicting for N.

Proof. Immediately from Observation 2.4.

2.3.1 Explored and Unexplored Subsets

In the thesis, we present several algorithms for enumeration of P1-
minimal and/or P0-maximal subsets of C. The algorithms during
their computation gradually explore the status of subsets of C, i.e., de-
termine whether the predicate P holds for the individual subsets or
not. A subset N of C is explored by an algorithm if the algorithm has
already determined whether PpNq � 0 or PpNq � 1; otherwise, N is
unexplored. To avoid repeatedly checking already explored subsets of
C, the algorithms maintain a set Unexplored that stores all the unex-
plored subsets (and thus implicitly also the explored subsets). Fur-
thermore, algorithms (not just ours) we describe in the thesis obey
the following four rules, R1, R2, R3, and R4, for a manipulation with
the set Unexplored:

preliminaries 27

R1: At the start of the computation (of the algorithm), Unexplored �
PpCq, i.e., all subsets of C are unexplored.

R2: Except the initialization step (R1), no element can be added
to Unexplored (i.e., everything that becomes explored stays ex-
plored).

R3: Whenever a set S with PpSq � 0 is removed from Unexplored,
then all subsets of S are also removed from Unexplored (i.e., if S
is explored then all subsets of S are also explored). This rule is
based on the monotonicity of the predicate P; since PpSq � 0, then
also PpS1q � 0 for every S1 � S.

R4: Dually to the third rule, if a set U such that PpUq � 1 is removed
from Unexplored, then all supersets of U are also removed from
Unexplored (i.e., if U is explored then all supersets of U are also
explored).

Based on the above rules on the manipulation with Unexplored,
we can state several additional invariant properties of Unexplored.

Observation 2.9. If N P Unexplored and PpNq � 0, then for every
superset N1 of N such that PpN1q � 0 it holds that N1 P Unexplored.

Proof. By contradiction, assume a superset N1 of N such that PpN1q �
0 and N1 R Unexplored. Due to rule R3, if N1 is explored then N is
also explored, i.e., N R Unexplored.

Observation 2.10. If N P Unexplored and PpNq � 1, then for every
subset N1 of N such that PpN1q � 1 it holds that N1 P Unexplored.

Proof. Dually to the proof of Observation 2.9.

Observation 2.11. Every P1-minimal and every P0-maximal subset of C
is explored iff all subsets of C are explored (i.e., Unexplored � H).

Proof. ñ: By Definition 2.7, for every subset N of C such that PpNq �
0 there exists a P0-maximal subset N1 of C such that N � N1. Dually,
by Definition 2.6, for every subset N of C such that PpNq � 1 there
exists a P1-minimal subset N1 of C such that N1 � N. All P0-maximal
and P1-minimal subsets of C are explored and, thus, based on rules
R3 and R4, all their subsets and supersets, respectively, are also ex-
plored.
ð: Every P0-maximal and every P1-minimal subset of C is a subset
of C.

Another invariant properties of Unexplored concerns minimal and
maximal unexplored subsets which are defined as follows:

Definition 2.10 (minimal unexplored subset). A subset N of C is a
minimal unexplored subset (of C) iff N is unexplored and @c P N the set
Nztcu is explored.

Definition 2.11 (maximal unexplored subset). A subset N of C is a
maximal unexplored subset (of C) iff N is unexplored and @c P CzN the
set N Y tcu is explored.

28 minimal sets over a monotone predicate: enumeration and counting

0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111
Figure 2.2: Illustration of the
explored and unexplored sub-
sets from Example 2.4. We en-
code individual subsets of C
as bitvectors, e.g., tc1, c2, c4u is
encoded as 1101. There are
two explored unsatisfiable sub-
sets (red with dashed border),
seven explored satisfiable sub-
sets (green with solid border),
and seven unexplored subsets
(drawn in black). Three of
the unexplored subsets are un-
satisfiable (black with dashed
border) and four of the un-
explored subsets are satisfiable
(black with solid border). There
are three maximal unexplored
subsets: tc1, c2, c3u, tc1, c3, c4u

and tc2, c3, c4u, and two min-
imal unexplored subset: tc2u

and tc1, c3, c4u.

Observation 2.12. Every maximal unexplored subset N such that PpNq �
0 is a P0-maximal subset of C.

Proof. By contradiction, assume that there is an element c P CzN
such that PpNYtcuq � 0. Since N is a maximal unexplored subset, it
holds that N Y tcu is explored. However, due to rule R3, all subsets
of NY tcu (including N) are also explored (which contradicts that N
is unexplored).

Observation 2.13. Every minimal unexplored subset N such that PpNq �
1 is a P1-minimal subset of C.

Proof. Dually to Observation 2.12.

Example 2.4. To illustrate the concepts, assume that C is a set of Boolean
clauses and P holds for a subset N of C (i.e., PpNq � 1) iff N is unsatis-
fiable. Thus, P1-minimal subsets of C are minimal unsatisfiable subsets of
C and P0-maximal subsets of C are maximal satisfiable subsets of C. Let
C � tc1, c2, c3, c4u with c1 � a, c2 � a, c3 � b, and c4 � a_ b (i.e.,
the same clauses as in Example 2.2). Figure 2.2 shows a possible state of
exploration of the power-set of C.

Two following two observations about the set Unexplored allow us
to mine critical and conflicting elements for some unexplored subsets.

Observation 2.14. Let N be an unexplored subset such that PpNq � 1.
Then for every c P N such that Nztcu R Unexplored it holds that c is
critical for N, i.e., PpNztcuq � 0.

Proof. Assume that PpNztcuq � 1. By rule R4, if Nztcu is explored
then N is also explored (contradiction).

Observation 2.15. Let N be an unexplored subset such that PpNq � 0.
Then for every c P CzN such that N Y tcu R Unexplored it holds that c is
conflicting for N, i.e., PpN Y tcuq � 1.

Proof. Assume that PpNYtcuq � 0. By rule R3, if NYtcu is explored
then N is also explored (contradiction).

Definition 2.12 (minable critical). Let N be an unexplored subset with
PpNq � 1, and let c be a critical element for N. The element c is minable
critical for N if Nztcu R Unexplored.

preliminaries 29

Definition 2.13 (minable conflicting). Let N be an unexplored subset
with PpNq � 0, and let c be a conflicting element for N. The element c is
minable conflicting for N if N Y tcu R Unexplored.

Example 2.5. For instance, examine the set N � tc1, c2, c3u with PpNq �
1 in Example 2.4. We can see that c2 is critical for N since Nztc2u is
explored and thus satisfiable.

Given an unexplored N such that PpNq � 1, the ability to mine
critical elements for N is very beneficial in a situation where we
want to find a P1-minimal subset M of N. Since every critical el-
ement of N has to be contained in every P1-minimal subset of N,
prior knowledge of a set of critical elements can significantly speed
up the extraction of M. Dually, given an unexplored N such that
PpNq � 0, prior knowledge of elements that are conflicting for N can
be very helpful if we want to identify a P0-maximal subset Nmss of
C such that N � Nmss. The role of critical (conflicting) elements dur-
ing extracting P1-minimal (P0-maximal) subsets is described in more
detail in Section 2.3.3.

2.3.2 Representation of Unexplored Subsets

There are various ways of representing the unexplored subsets. Per-
haps the most straightforward way is to explicitly hold the set of all
unexplored subsets and/or the set of all explored subsets. However,
due to the exponential growth of PpCq w.r.t. |C|, an explicit repre-
sentation of unexplored subsets is impractical for larger input sets.

In all our algorithms we present in this thesis, we adopt a sym-
bolic representation that was originally proposed, in the context of
MUS enumeration, by Liffiton et al. [Liffiton and Malik, 2013, Previti
and Marques-Silva, 2013, Liffiton et al., 2016] and used in their algo-
rithm MARCO. The representation exploits the well-known isomor-
phism between finite power-sets and Boolean algebras. Given a set
C � tc1, . . . , cnu of elements, we introduce a set X � tx1, . . . , xnu of
Boolean variables. Note that every valuation of X one-to-one maps
to a subset of C. To represent the unexplored subsets, we maintain
two Boolean formulas in CNF, map� and map�, over X such that
each model of the conjunction map� ^map� corresponds to an un-
explored subset of C and vice versa. The formulas are maintained as
follows:

• Initially map� � map� � True since the whole PpCq is unexplored
(according to the rule R1).

• To mark a set N � C such that PpNq � 0 and all its subsets as
explored (according to the rule R3), we add the clause

�
ciRN xi to

map�.

• Symmetrically, to mark a set N � C such that PpNq � 1 and all
its supersets as explored (according to the rule R4), we add the
clause

�
ciPN xi to map�.

30 minimal sets over a monotone predicate: enumeration and counting

Example 2.6. Assume that we are given the set C and the predicate P
from Example 2.4, i.e., C contains 4 Boolean clauses: c1 � a, c2 � a,
c3 � b, and c4 � a_ b, and P is the standard Boolean unsatisfiability.
If all elements of PpCq are unexplored then map� � map� � True. If
tc1, c2, c4u is found to be unsatisfiable and tc1, c3u, tc1, c4u, tc3, c4u to be
satisfiable, then map� � p x1 _ x2 _ x4q and map� � px2 _ x4q ^

px2 _ x3q ^ px1 _ x2q. Note that this state of exploration is the same as the
one used in Example 2.4 and illustrated in Figure 2.2.

To get an arbitrary unexplored subset, we ask a SAT solver for a
model of map� ^map�. To verify if a subset N of C is unexplored,
we check if the valuation of X that corresponds to N is a model of
map�^map�. Furthermore, in our algorithms, we need to be able to
obtain the following specific unexplored subsets.

First, for a given S � C, we need to be able to obtain a maxi-
mal unexplored subset of S, i.e., a subset N of S such that @c P SzN
the set N Y tcu is explored. Similarly, we need to be able to obtain
minimal unexplored subsets of S. As was already noted in [Liffiton
et al., 2016], maximal and minimal unexplored subsets correspond
to maximal and minimal models of map� ^map�. To get a maximal
unexplored subset of S, we instruct the SAT solver to fix the truth as-
signment of the variables txi|ci P CzSu to False and ask for a maximal
model of map� ^map�; similarly for the minimal case.

Second, for a given minimal unexplored subset N0, we need to be
able to produce a maximal unexplored subset Nk such that Nk � N0.
This can be achieved by instructing the SAT solver to fix the truth
assignment of the variables txi|ci P N0u to True and asking for a
maximal model of map� ^map�. A straightforward improvement to
this approach can be done if we note that map� is satisfied by every
variable assignment that sets the variables txi|ci P N0u to True (since
N0 is unexplored and map� intuitively only requires a presence of
elements of C). Therefore, it is enough to fix txi|ci P N0u to True
and ask just for a maximal model of map�. Note that this query can
be solved in polynomial time. In particular, one can start with the
satisfying assignment that corresponds to N0, and then attempt to
switch one by one the variables that correspond to CzN0 from False
to True and keep only the changes that preserve the satisfaction of
map�.

Finally, given a subset S of C, we need to be able to obtain an
unexplored subset that contains the whole S. To do that, we simply
instruct the SAT solver to fix the values of the variables txi|ci P Su to
True and ask for a model of map� ^map�.

For the implementation, we use the miniSAT [Eén and Sörens-
son, 2003] solver, which fulfills our requirements, i.e., it allows fix-
ing truth assignments to variables and can produce minimal and
maximal models.2 We use miniSAT in an incremental manner, i.e., 2 The minimal and maximal models are

enforced in miniSAT by setting the de-
fault polarity (values) of variables at de-
cision points during the solving to False
and True, respectively.

we hold a single instance of miniSAT during the whole computa-
tion of an algorithm and incrementally add clauses to the formula
map� ^map�. Furthermore, the formula map� ^map� can be inter-
nally simplified by miniSAT when possible. Let us note that Liffiton

preliminaries 31

et al. [Liffiton et al., 2016], who first proposed this kind of sym-
bolic representation, also incrementally use miniSAT in the above-
described manner.

2.3.3 Shrink and Grow

We now define two procedures, shrink and grow, that are used as sub-
routines of many existing algorithms for enumeration of P1-minimal
and P0-maximal subsets (including the algorithms presented in this
thesis).

- shrinkpN, critsq takes as an input a subset N of C such that PpNq �
1 together with a set crits of elements that are critical for N. The
output is a P1-minimal subset N1 of C such that N1 � N � C.
Moreover, note that if N is unexplored, then N1 is also unexplored
(Observation 2.10).

- growpN, conflictsq takes as an input a subset N of C such that
PpNq � 0 together with a set conflicts of elements that are con-
flicting for N. The output is a P0-maximal subset N1 of C such
that N � N1 � C. Moreover, note that if N is unexplored, then N1

is also unexplored (Observation 2.9).

We refer to the execution of shrinkpN, critsq as to shrinking N into a
P1-minimal subset of N. Similarly, the execution of growpN, conflictsq
is called growing N into a P0-maximal subset of C.

In general, the shrinking and the growing is implemented via a
single P1-minimal and P0-maximal subset extraction procedure, re-
spectively. There have been proposed a plethora of such extractors,
e.g., [Nadel et al., 2014, Belov and Marques-Silva, 2012, Belov et al.,
2014, Bacchus and Katsirelos, 2015, Ghassabani et al., 2016, Marques-
Silva et al., 2013a, Mencía et al., 2016, Felfernig et al., 2012, Bailey
and Stuckey, 2005]. Most of the approaches are domain specific, i.e.,
tailored for a particular type of the set C and the predicate P (e.g.,
Boolean clauses and Boolean unsatisfiability). However, some of the
algorithms are domain agnostic, i.e., they can be applied for an ar-
bitrary type of C and P (as long as C is finite and P monotone). To
at least illustrate how the shrinking and growing can be performed,
let us here present two simple domain agnostic procedures (one for
growing and one for shrinking). More advanced domain specific
solutions are discussed later in the thesis.

Shrinking In Algorithm 2.1, we show a deletion-based shrinking ap-
proach [Chinneck and Dravnieks, 1991, Bakker et al., 1993]. The al-
gorithm iteratively maintains a subset N of C such that PpNq � 1
and a set crits of elements that are critical for N. In each iteration,
the algorithm picks an element c P Nzcrits and checks if the predi-
cate P holds for Nztcu. If PpNztcuq � 0, then c is critical for N, and
hence it is added to crits. Otherwise, if PpNztcuq � 1, the element c is
removed from N. The algorithm terminates once N � crits. The in-
variant of the algorithm is that crits � N and every c P crits is critical

32 minimal sets over a monotone predicate: enumeration and counting

input : a subset N of C such that PpNq � 1
input : a set crits of elements that are critical for N
output: a P1-minimal subset N1 of C such that N1 � N � C

1 while Nzcrits � H do
2 c Ð pick c P Nzcrits
3 if PpNztcuq � 1 then
4 N Ð Nztcu
5 else
6 crits Ð critsY tcu
7 return N

Algorithm 2.1: Domain agnostic shrinking (one of existing approaches).

for N. Thus, when N � crits, it is guaranteed that N is a P1-minimal
subset of C (Observation 2.7). Also, note that in every iteration, ei-
ther N is reduced or crits is enlarged, hence it is guaranteed that the
computation terminates.

In total, the algorithm performs |N0| � |crits0| predicate checks,
where N0 and crits0 are the initial input values. Contemporary do-
main specific algorithms (e.g., [Belov and Marques-Silva, 2012, Nadel
et al., 2014, Belov et al., 2014, Ghassabani et al., 2016]) based on
Algorithm 2.1 are often able to significantly reduce the number of
performed predicate checks. For example, if C is a set of Boolean
clauses and the predicate checks are carried out by a SAT solver, Al-
gorithm 2.1 can be improved by utilizing unsat cores provided by a
SAT solver.

Let us note that there have been proposed several other domain
agnostic solutions that conceptually differ from Algorithm 2.1. For
example, a constructive approach [de Siqueira N. and Puget, 1988]
starts with the empty set and iteratively adds elements from N0 to the
empty set to construct a P1-minimal subset of N0. The constructive
approach performs Op|N0| � kq predicate checks where k is the car-
dinality of the largest P1-minimal subset of N0. Another approach,
called dichotomic [Hemery et al., 2006], is based on binary search and
performs Opk � log |N0|q predicate checks. The main takeaway for
the reader is that the cardinality of the set that is being shrunk sig-
nificantly affects the complexity of the shrinking. Also, prior knowl-
edge of a set of critical constraints for N0 can significantly speed up
the shrinking.

Growing A growing procedure [Bailey and Stuckey, 2005] that works
in a dual way to the deletion-based shrinking approach is shown in
Algorithm 2.2. The algorithm iteratively maintains a subset N of
C such that PpNq � 0 and a set conflicts of elements that are con-
flicting for N. In each iteration, the algorithm picks an element
c P pCzNqzconflicts and checks if the predicate P holds for N Y tcu. If
PpN Y tcuq � 1, then c is conflicting for N, and hence it is added to
conflicts. Otherwise, if PpN Y tcuq � 0, then the element c is added
to N. The invariant of the algorithm is that conflicts � CzN and that

preliminaries 33

input : a subset N of C such that PpNq � 0
input : a set conflicts of elements that are conflicting for N
output: a P0-maximal subset N1 of C such that N � N1

1 while conflicts � CzN do
2 c Ð pick c P pCzNqzconflicts
3 if PpN Y tcuq � 0 then
4 N Ð N Y tcu
5 else
6 conflicts Ð conflictsY tcu
7 return N

Algorithm 2.2: Domain agnostic growing (one of existing approaches).

every c P conflicts is conflicting for N. Hence, once conflicts � CzN, it
is guaranteed that N is a P0-maximal subset of C (Observation 2.8).
The termination is guaranteed since in every iteration either CzN is
reduced or conflicts is enlarged. The total number of performed pred-
icate checks is |C| � p|N0| � conflicts0q, where N0 and conflicts0 are the
initial input values.

2.4 Related Work

There have been studied a plethora of computational problems that
can be formulated as computing minimal sets subject to a mono-
tone predicate, and it is hard to identify the very first work on this
topic. For instance, de Kleer and Williams [de Kleer and Williams,
1987] and Reiter [Reiter, 1987] studied the problems of identifying
minimal diagnoses and minimal conflicts in the context of diagnosing
misbehaving systems. Another example is the work by Ben-Eliyahu
and Dechter [Ben-Eliyahu and Dechter, 1993] who focused on com-
puting minimal models of a propositional formula, or the work by
Chinneck and Dravnieks [Chinneck and Dravnieks, 1991] on locating
minimal infeasible constraint sets in linear programs. Yet other ex-
amples include, e.g., the computation of minimal unsatisfiable and
maximal satisfiable subsets [Bailey and Stuckey, 2005], a maximal
autarky [Marques-Silva et al., 2014], or minimal independent sup-
ports [Ivrii et al., 2016].

To the best of our knowledge, Marques-Silva, Janota, and Belov
were the first who noted that there are so many computational prob-
lems with the same underlying, monotone, structure [Marques-Silva
et al., 2013b]. In particular, they introduced the general concept of
minimal sets over a monotone predicate (MSMPs), shown several com-
putational problems that can be cast as computing MSMPs, and pro-
posed an algorithm for computing a single MSMP. Subsequently,
Marques-Silva and Janota studied the query complexity of finding
minimal sets over a monotone predicate [Janota and Marques-Silva,
2016]. Moreover, Marques-Silva, Janota, and Mencía [Marques-Silva
et al., 2017] provided a long list of particular instances of the general

34 minimal sets over a monotone predicate: enumeration and counting

problem of identifying MSMPs that arise in the context of proposi-
tional formulae.

There have been also many studies on various decision and func-
tional problems related to MSMPs, e.g., extraction of a single or all
MSMPs, extraction of the smallest MSMP, or deciding whether there
is an MSMP that contains a particular element (of the reference set C).
Some of these studies focused on particular instances of MSMPs (e.g.,
minimal models), and some apply to the general MSMP settings. We
postpone the discussion about studies that are tightly connected to
our work to the appropriate following chapters.

Part I

Domain Agnostic MUS
Enumeration

3
The Role and Applications of Domain Agnostic MUS
Enumeration Algorithms

In the past decades, there emerged a plethora of various instances
of MSMPs, e.g., minimal independent supports [Ivrii et al., 2016],
minimal inconsistent subsets [Barnat et al., 2016], minimal induc-
tive validity cores [Ghassabani et al., 2016], minimal models [Ben-
Eliyahu and Dechter, 1993], or minimal correction subsets [Marques-
Silva et al., 2013a]. It is often the case that the input set C is a set of
some constraints and the monotone predicate P is a constraint unsatis-
fiability. In such case, the P1-minimal subsets of C are called minimal
unsatisfiable subsets (MUSes) of C. For example, C can be a set of
Boolean, SMT, or LTL formulae, and P the standard Boolean, SMT,
or LTL, unsatisfiability, respectively. In this part of the thesis, we
focus on domain agnostic MUS enumeration algorithms. A domain
agnostic MUS enumeration algorithm takes as an input a finite set C
of arbitrary constraints, and it enumerates/identifies all MUSes of C.

A natural role of domain agnostic MUS enumeration algorithms
is to serve as ready-to-use solutions for any constraint domain where
a new application of MUSes arises. Of course, an algorithm that is
tailored for an MUS enumeration in a particular constraint domain
will probably perform better than a domain agnostic MUS enumera-
tion algorithm, since domain agnostic algorithms cannot fully exploit
properties of particular constraint domains. However, development
of such a domain specific algorithm takes some time. Consequently,
it is often the case that a domain agnostic algorithm is used in the
meantime before a domain specific solution is developed. Moreover,
it is often the case that the domain specific algorithms are based on
existing domain agnostic solutions.

To illustrate the variety of constraint domains where domain ag-
nostic MUS enumerators can be applied, we first describe in Chap-
ter 3 (this chapter) several particular applications of MUSes. Then, in
Chapter 4, we present our two domain agnostic MUS enumeration
algorithms: TOME [Bendík et al., 2016b] and ReMUS [Bendík et al.,
2018b].

Finally, let us note that the domain agnostic MUS enumeration al-
gorithms we discuss here can be in fact used for any instance of the
general MSMP enumeration problem, i.e., the input set C can contain

38 minimal sets over a monotone predicate: enumeration and counting

0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111
Figure 3.1: Illustration of the
requirements analysis example.
We encode individual subsets
as bit-vectors, e.g., tϕ2, ϕ3, ϕ4u

is encoded as 0111. The sub-
sets with solid green border are
consistent, whereas the subsets
with red dashed border are in-
consistent. The maximal consis-
tent and minimal inconsistent
subsets are filled with a back-
ground color.

arbitrary elements and P : PpCq Ñ t1, 0u can be an arbitrary mono-
tone predicate. Yet, it is unclear how efficient would the MUS enu-
meration algorithms be in the general MSMP setting. In particular,
the design of the MUS enumeration algorithms is based on several
assumptions that are specific for unsatisfiable constraint systems. For
instance, the predicate checks, i.e., unsatisfiability checks, are usu-
ally very expensive in case of MUS enumeration (often NP-complete
or harder). Hence, MUS enumeration algorithms often tend to opti-
mize (minimize) the number of performed predicate (unsatisfiability)
checks. On the other hand, one can image instances of MSMPs where
the predicate checks are very cheap and thus a suitable MSMPs enu-
meration algorithm should optimize other criteria. Hence, evaluation
of the proposed domain agnostic MUS enumeration algorithms for
other instances of MSMPs would be an interesting future research
direction.

3.1 Requirements Analysis

Establishing requirements is an essential stage in all development.
In general, the requirements can be described either informally, e.g.,
using a natural language, or formally via a kind of mathematical
logic such as the Linear Temporal Logic (LTL). The formal descrip-
tion enables various model-based techniques, such as model check-
ing. Moreover, we also get the opportunity to check the require-
ments earlier, even before any system model is built. This so-called
requirements sanity checking [Barnat et al., 2012, Bendík, 2017] aims
to assure that a given set of requirements is consistent (satisfiable)
and that there are no redundancies. If inconsistencies or redundan-
cies are found, it is usually desirable to present them to the user
in a minimal fashion, exposing the core problems in the require-
ments. As redundancy checking can be reduced to inconsistency
checking [Barnat et al., 2016], the goal is thus to find either all or
at least some minimal inconsistent (unsatisfiable) subsets of require-
ments. Subsequently, the minimal inconsistent subsets can be used
to refine the requirements (see, e.g., our study [Bendík, 2017] on such
a methodology).

We illustrate the inconsistency checking on an example adopted
from our prior work [Bendík et al., 2016a]. Assume that we are go-
ing to build a system that contains one peculiar component that has

the role and applications of domain agnostic mus enumeration algorithms 39

a very expensive initialization phase and also a very expensive shut-
down phase. We constrain the way the component is used by a set
of four requirements expressed using the branching temporal logic
CTL [Clarke and Emerson, 1981]. In the formulae, we use the atomic
propositions q denoting that a query has arrived, r denoting that the
component is running, and m denoting that the system is taken down
for maintenance. Our first requirement states that whenever a query
arrives, the component has to become active eventually; formally
ϕ1 :� AGpq Ñ AF rq. The second requirement states that once the
component is started, it may never be stopped. This may be a reason-
able requirement e.g. if the component’s initialization is expensive.
Formally, the requirement is expressed as ϕ2 :� AGpr Ñ AG rq.
The third requirement states that the system has to be taken down
for maintenance once in a while. This also means that the com-
ponent has to become inactive at that time. This is formalised as
ϕ3 :� AG AF pm ^ rq. Our last requirement states that after the
maintenance, the system (including the component we are inter-
ested in) has to be restarted, formally ϕ4 :� AGpm Ñ AF p m^ rqq.
The situation is illustrated in Figure 3.1. We discover that there is
one minimum inconsistent subset of the four requirements, namely
tϕ2, ϕ3, ϕ4u, and that there are three maximum consistent subsets
of the requirements, namely tϕ1, ϕ2, ϕ3u, tϕ1, ϕ2, ϕ4u, tϕ1, ϕ3, ϕ4u.
The consistency of the first set tϕ1, ϕ2, ϕ3u might be surprising, as
one would suspect the pair of requirements ϕ2 and ϕ3 to be the
source of inconsistency. However, the first three requirements can
hold at the same time – in systems where no queries arrive at all.

In general, the MUS enumeration problem naturally subsumes the
problem of satisfiability checking, and performing these checks is the
most expensive part of the MUS enumeration. In the case of LTL
and CTL domains, the satisfiability checking problem is PSPACE-
complete [Sistla and Clarke, 1985] and EXPTIME-complete [Emerson
and Halpern, 1982], respectively. From the practical point of view, in
our recent study [Bendík and Černá, 2018], we were able to deal with
constraint sets that contained hundreds of LTL constraints (require-
ments).

Finally, let us note that our domain agnostic MUS enumeration
algorithm, called ReMUS (see Section 4.4), was successfully applied
within the European Union’s Horizon 2020 project called AMASS1. 1 Project AMASS (Architecture-driven,

Multi-concern and Seamless Assurance
and Certification of Cyber-Physical Sys-
tems), https://amass-ecsel.eu/ (Ac-
cessed: October 2020)

In particular, ReMUS was incorporated into a so-called V&V man-
ager2: a tool for validation and verification of a system model and

2 Project AMASS, deliverable D3.6: Pro-
totype for Architecture-Driven As-
surance (c), https://amass-ecsel.eu/

content/deliverables (Accessed: Oc-
tober 2020)

system requirements. The purpose of ReMUS was to enumerate min-
imal inconsistent (unsatisfiable) subsets of a given inconsistent set of
LTL requirements (which were then used to refine the requirements).
Our industrial partners evaluated ReMUS on a collection of propri-
etary industrial benchmarks and compared it with an algorithm tai-
lored for MUS enumeration in the LTL domain called Looney [Barnat
et al., 2016]. They found ReMUS to be faster than Looney by several
orders of magnitude.

https://amass-ecsel.eu/
https://amass-ecsel.eu/content/deliverables
https://amass-ecsel.eu/content/deliverables

40 minimal sets over a monotone predicate: enumeration and counting

3.2 Formal Equivalence Checking

Formal equivalence checking (FEC) [Huang and Cheng, 2012] deals
with the following question: Do two design models provide equiva-
lent functionality over all input stimuli?

Performing FEC is often both time and memory expensive even
for small models. Therefore, to perform FEC for large models, the
compared models are separated into small slices, and instead of
checking the complete models for equivalence, the individual slices
are checked for equivalence. However, ripping a slice from the com-
plete model may introduce behavior that was not possible in the
original model. In particular, some combinations of the input stimuli
of the slice may be unrealizable in the complete model. To eliminate
such unrealizable behavior, a set of environmental assumptions is
constructed and the FEC is performed w.r.t. these assumptions.

One of the contemporary approaches for performing FEC is based
on employing SAT solvers. In particular, the two model slices to-
gether with the equivalence requirement are encoded into a Boolean
formula R, and the environmental assumptions are encoded into a
Boolean formula A. The formulae are constructed in a way that their
conjunction R ^A is unsatisfiable if and only if the two slices are
functionally equivalent w.r.t. the environmental assumptions. How-
ever, to prove that the two slices are indeed functionally equivalent,
one must also verify that the environmental assumptions are guar-
anteed in the complete models. Since verifying the assumptions is
very expensive, it is crucial to reduce the number of assumptions
that need to be verified.

Cohen et al. [Cohen et al., 2010] noted that A is usually expressed
as a Boolean formula in CNF, i.e., A can be seen as a set of clauses.
Let us say that a subset A1 of A is sufficient if R^A1 is unsatisfiable.
Moreover, A1 is minimal sufficient if none of its proper subsets is
sufficient. Cohen et al. proposed to find a minimal sufficient subset
A1 of A. Subsequently, only the environmental assumptions that are
encoded in A1 need to be verified for holding in the complete model.
Even better, multiple minimal sufficient subsets can be found and
only the one that encodes the minimum number of assumptions is
then processed. The minimal sufficient subsets are a kind of minimal
unsatisfiable subsets.

The domain of SAT constraints is the most studied domain in the
context of MUS enumeration. The satisfiability problem in this do-
main is NP-complete [Cook, 1971]. Contemporary MUS enumeration
algorithms (e.g., [Bendík et al., 2018b, Liffiton et al., 2016, Narodyt-
ska et al., 2018, Bacchus and Katsirelos, 2016]) are able to deal with
millions of SAT constraints.

3.3 Safety Properties Checking

Another application of MUSes arises in the area of safety properties
checking. We are given a model of a system that consists of a set of

the role and applications of domain agnostic mus enumeration algorithms 41

initial states, a set of all states in the system, a set R of all reachable
states, and a set U of unsafe states. The goal is to determine whether
the system is safe, i.e., whether RXU � H. Due to the combinatorial
explosion of the state space (w.r.t. the number of system variables),
explicit exploration of the model is practically intractable. Two of
the many contemporary approaches for dealing with this problem
are abstraction and Bounded Model Checking.

Using abstraction over-approximates the system, i.e., it adds be-
havior that is not feasible in the original model. This enlarges the
set R of all reachable states but also simplifies the description of the
model and makes the model checking task easier. If the abstraction
is shown to be safe, the original system is necessarily also safe. In the
other case, when there is a counter-example to the safety properties
in the abstract model, it might be either the case that the counter-
example is feasible in the original model or that it is spurious, i.e.,
caused by the abstraction. The goal is thus to find an abstraction
that, on the one hand, extensively simplifies the model and makes
the model checking tractable, yet, on the other hand, excludes all
spurious counter-examples.

Bounded Model Checking (BMC) deals with the problem of the ex-
istence of a counter-example reachable in at most k steps, where k is
a fixed number. The problem is encoded into a Boolean formula F
such that F is unsatisfiable if and only if there is no reachable unsafe
state in at most k steps. If F is satisfiable, we can extract a counter-
example from the SAT solver. Otherwise, we can extract a proof from
the SAT solver that points out why the system is safe up to k steps.
The disadvantage of BMC is that if we find no counter-example in at
most k steps, we have no guarantee that the system is also safe for
larger values of k.

McMillan and Amla [McMillan and Amla, 2003] proposed a tech-
nique called Proof-Based Abstraction Refinement (PBA) that combines
abstraction with BMC. In particular, PBA alternates the two meth-
ods, starting with BMC on the original model using a low value of
k. If BMC finds a counter-example, the original model is unsafe. In
the other case, PBA obtains a proof of F ’s unsatisfiability and uses
it to build an abstraction of the original model. Such abstraction
is guaranteed to be safe up to k steps. PBA checks the abstraction
using a standard model checker, and if the abstraction is safe, it is
guaranteed that the original model is also safe. In the other case, a
counter-example is found and it is checked for being feasible in the
original model. If the counter-example is spurious, PBA reruns BMC
on the original model with an increased value of k, say k1, where k1

is the number of steps in which the counter-example was reached in
the abstract model.

The less information about the system is used in the proof of F ’s
unsatisfiability, the more behavior can be abstracted from the origi-
nal model. This increases the likelihood that the model checking of
the resultant abstract model is tractable. It is often the case that F is
expressed as a Boolean formula in CNF, i.e., it is a set of constraints

42 minimal sets over a monotone predicate: enumeration and counting

(clauses). In such a case, the minimal proofs of F ’s unsatisfiabil-
ity are the minimal unsatisfiable subsets of F . Therefore, one can
enumerate multiple MUSes of F and use the one with minimum
cardinality for building the abstraction. Further optimizations to this
procedure were proposed by Nadel [Nadel, 2010].

3.4 Worst-Case Execution Time Analysis

Static analysis techniques can be used to compute safe bounds on the
worst-case execution time (WCET) of programs. Unfortunately, for
large programs, identifying the WCET is often practically intractable
within a reasonable time limit. One of the possible approaches to
cope with a large program is to run WCET analysis on an abstrac-
tion that over-approximates the original program. The abstraction
simplifies the description of the system and thus makes the WCET
analysis tractable. However, the abstraction might enable paths that
are not feasible in the original system, and thus the computed safe
bound on the WCET can be very imprecise. To improve the accuracy
of the analysis, one has to refine the abstraction. Here, we briefly
describe a methodology, called Trickle [Blackham et al., 2014], to au-
tomatically detect infeasible paths on compiled binary programs to
refine WCET estimates.

The Trickle methodology consists of several steps. In the first step,
Trickle transforms the input program into single static assignment form
(SSA) [Cytron et al., 1991], constructs the control flow graph (CFG)
of the program, and computes conditions that guard/enable individ-
ual transitions/edges in the CFG. All these conditions relate to SSA
variables and hence can be expressed as SMT constraints.

In the second step, Trickle employs the implicit path enumeration
technique [Li et al., 1995] to generate a set of integer linear equa-
tions that encode the CFG. Variables of the linear equations repre-
sent the execution counts of each basic block, as well as each edge
between blocks, in the CFG. These linear equations are used to form
an integer linear program (ILP) that captures an abstraction (over-
approximation) of the original system. Moreover, an objective func-
tion for the ILP is constructed such that its maximum value corre-
sponds to the WCET (worst-case execution time) of the abstraction.

In the next step, Trickle solves the ILP and obtains the WCET.
Moreover, based on the values of the variables in the solution of the
ILP, Trickle reconstructs the longest path through the control flow
graph that corresponds to the WCET.

Subsequently, Trickle checks whether the longest path is feasible
in the original system. In particular, Trickle collects all conditions
along the path (computed in the first step), i.e. a set C of SMT con-
straints, and checks C for satisfiability via an SMT solver. If C is un-
satisfiable, then the path is infeasible in the original system and thus
the abstraction needs to be refined. To find a suitable refinement,
Trickle first identifies all minimal unsatisfiable subsets (MUSes) of C.
Each such MUS is then used to refine the abstraction of the system

the role and applications of domain agnostic mus enumeration algorithms 43

(the ILP), eliminating an entire class of infeasible paths including the
tested one. Subsequently, Trickle repeats the procedure, i.e., it again
solves the (refined) ILP and checks the corresponding path for feasi-
bility until it obtains a path whose corresponding set C of constraints
is satisfiable. Such a path is then used as the final upper-bound of
the WCET.

Note that in some cases, the MUS enumeration can be practically
intractable due to, e.g., a too large number of MUSes or too expen-
sive SMT checks (depending on the underlying SMT theory or sim-
ply due to a large number of constraints). In such a case, Trickle is
not able to refine the abstraction and thus it terminates and provides
at least an over-approximation of the exact WCET (given by the in-
feasible path). Moreover, note that even in the other case, where the
constraints C are satisfiable, the corresponding path might still be
infeasible in the original program. Loops, unresolvable memory ac-
cesses, non-linear arithmetic, and invariants on the code which are
not expressible for the SMT solver, can all create infeasible paths
which cannot be found using the Trickle’s SMT-based approach.

Finally, let us note that the tractability of a complete MUS enu-
meration in the SMT domain highly depends on the underlying the-
ory. In Section 4.7, we evaluate several MUS enumeration algorithms
on benchmarks from the QF_UF, QF_IDL, QF_RDL, QF_LIA and
QF_LRA divisions of the library SMT-LIB3. The algorithms can oper- 3 http://www.smt-lib.org/

ate on benchmarks that contain millions of SMT constraints, and are
able to identify thousands of MUSes within a reasonable time limit.

http://www.smt-lib.org/

4
Domain Agnostic MUS Enumeration

We now gradually describe our two domain agnostic MUS enumera-
tion algorithms: TOME [Bendík et al., 2016b] and ReMUS [Bendík
et al., 2018b]. In particular, we first define the notation specific
for this chapter (Section 4.1). In Section 4.2, we introduce an MUS
enumeration scheme that generalizes several existing MUS enumer-
ation algorithms including TOME and ReMUS. Subsequently, in Sec-
tions 4.3 and 4.4, we describe the two specific algorithms. Section 4.5
provides a summary of related work, i.e., other existing domain ag-
nostic MUS enumeration algorithms. In Section 4.6, we describe our
domain agnostic MUS enumeration tool that implements several ex-
isting MUS enumeration algorithms. Finally, in Section 4.7, we ex-
perimentally compare our MUS enumeration algorithms with other
existing solutions.

4.1 Notation

Throughout this chapter, we call the elements of C constraints, and
the monotone predicate P an unsatisfiability predicate. We simply
say that a set N is satisfiable iff PpNq � 0; otherwise, N is unsat-
isfiable.1 The P0-maximal subsets of C are thus Maximal Satisfiable 1 We assume standard constraint sys-

tems where the satisfiability predicate
is naturally monotone. Intuitively, an
addition of a constraint to an unsatis-
fiable (also called over-constrained) sys-
tem cannot make it satisfiable. For in-
stance, for the particular case where
C is a set of Boolean clauses, we wit-
nessed the monotonicity of the unsatis-
fiability predicate in Observation 2.2.

Subsets (MSSes) of C, and the P1-minimal subsets of C are Minimal
Unsatisfiable Subsets (MUSes) of C:

Definition 4.1 (MUS). A subset N of C is a minimal unsatisfiable sub-
set (MUS) of C iff N is unsatisfiable and for every N1 � N it holds that N1

is satisfiable. Equivalently, by Observation 2.3, N is an MUS iff for every
c P N the set Nztcu is satisfiable.

Definition 4.2 (MSS). A subset N of C is a maximal satisfiable subset
(MSS) of C iff N is satisfiable and for every N1, N � N1 � C, it holds that
N1 is unsatisfiable. Equivalently, by Observation 2.4, N is an MSS of C iff
for every c P CzN the set N Y tcu is unsatisfiable.

Critical and conflicting elements for a subset of C (Definitions 2.8
and 2.9) are called critical and conflicting constraints, respectively. In
particular, a constraint c P N is critical for an unsatisfiable set N
iff Nztcu is satisfiable, and a constraint d P CzM is conflicting for a
satisfiable subset M of C iff MY tdu is unsatisfiable.

46 minimal sets over a monotone predicate: enumeration and counting

input : an unsatisfiable set C of constraints
output: all MUSes of C

1 UnexploredÐ PpCq
2 while there is a u-seed do
3 S Ð find a u-seed
4 crits Ð collect minable critical constraints for S
5 Smus Ð shrinkpS, critsq // black-box single MUS extraction subroutine

6 UnexploredÐ UnexploredztT | Smus � T � Cu
7 output Smus

Algorithm 4.1: Seed-Shrink Scheme for MUS enumeration.

As defined in Section 2.3.1, we use the set Unexplored to store all
subsets of C that are unexplored by an MUS enumeration algorithm,
and we follow the rules R1-R4 for manipulation with Unexplored.
Furthermore, given an unexplored subset N of C, we say that N is
an s-seed if N is satisfiable; otherwise, N is a u-seed. We also use the
terminology of a correction subset of C:

Definition 4.3 (MCS). A subset N of C is a correction subset of C iff
the set NzC is satisfiable. Moreover, N is a minimal correction subset
(MCS) of C iff NzC is satisfiable and for every N1 � N the set CzN1 is
unsatisfiable.

Intuitively, MCSes of C represents the minimal subsets of con-
straints that need to be removed to make C satisfiable. Note that a
set N is an MCS of C if and only if the complement CzN of N is an
MSS. Consequently, MSSes and MCSes encode the very same infor-
mation about C’s unsatisfiability. Since in some cases it makes sense
to talk about satisfiable subsets and in other cases about corrections,
we use both the terms in the following.

4.2 Seed-Shrink Scheme

We have proposed [Bendík and Černá, 2020a] a scheme, called seed-
shrink scheme, that generalizes several existing MUS enumeration al-
gorithms. Especially, the scheme generalizes some of our algorithms
that we present in this thesis, and also an algorithm MARCO [Liffi-
ton et al., 2016] which is the major competitor of our domain agnostic
algorithms. We call the algorithms that implement the scheme seed-
shrink algorithms.

The scheme is described in Algorithm 4.1. The computation starts
by initializing the set Unexplored to PpCq. Subsequently, the scheme
iteratively identifies all MUSes of C. Each iteration starts by finding
a u-seed S. Subsequently, minable critical constraints crits for S are
collected, and a shrinking procedure (introduced in Section 2.3.3) is
used to get an MUS Smus of S. The iteration is concluded by updating
the set Unexplored: all supersets of Smus are unsatisfiable since Smus

is unsatisfiable, thus they are all removed from Unexplored. The
enumeration of MUSes is completed once there is no more u-seed.

domain agnostic mus enumeration 47

All MUSes identified by a seed-shrink algorithm come from shrink-
ing, and any available (even a domain specific) single MUS extraction
algorithm can be used to implement the shrinking. Importantly, we
assume that the shrinking is implemented in a black-box manner:
the input is a u-seed S and a set crits of critical constraints for S and
the only output is an MUS of S. Therefore, except for identifying
the resultant MUS Smus, shrinking has no side effect on the over-
all computation (e.g., the set Unexplored cannot be updated during
shrinking).

The scheme does not specify how the u-seeds are found. This
can be a very complex process, and the way it is implemented is
the only significant difference between the individual seed-shrink
algorithms. In general, the process of identifying u-seeds involves
checking unexplored subsets for satisfiability and also involves re-
moving satisfiable and/or unsatisfiable subsets (except for MUSes)
from the set Unexplored. From the efficiency point of view, the main
difference between seed-shrink algorithms is in which and how many
subsets the algorithms check for satisfiability while searching for a u-
seed. Intuitively, to be efficient, a seed-shrink algorithm should tend
to minimize the number of performed satisfiability checks. Also, the
u-seeds identified by the algorithm should be relatively small and
thus easy to shrink. Moreover, the algorithm should explore PpCq
in a way that allows mining many critical constraints for the u-seeds
that are being shrunk.

Finally, let us note that the seed-shrink scheme can be straight-
forwardly dualized into a seed-grow scheme for MSS enumeration.
In particular, instead of identifying u-seeds and shrinking them to
MUSes, one can identify s-seeds and grow them to MSSes.

4.3 TOME

This section describes our seed-shrink MUS enumeration algorithm
called TOME [Bendík et al., 2016b]. The name is an acronym for
Tunable Online MUS Enumeration.

4.3.1 The Basic Workflow

TOME is an algorithm that enumerates both MUSes and MSSes of
the input set of constraints. The algorithm simultaneously imple-
ments the seed-shrink and the seed-grow scheme: MUSes are found
by shrinking u-seeds and MSSes by growing s-seeds. To perform
shrinking and growing efficiently, TOME tends to identify u-seeds
and s-seeds that are close (in terms of cardinality) to the resultant
MUSes and MSSes and thus should be relatively easy to shrink and
grow, respectively. The seeds are found by constructing and search-
ing so-called unexplored chains. An unexplored chain is a sequence
K � xN1, . . . , Nky such that N1 � N2 � � � � � Nk, N1 is a minimal
unexplored subset, Nk is a maximal unexplored subset, and for all
1 i ¤ k it holds that |NizNi�1| � 12. The monotonicity of the sat-

2 Recall that a set N is a minimal unex-
plored subset iff N P Unexplored and
@c P N it holds Nztcu R Unexplored.
Dually, a set N is a maximal unexplored
subset iff N P Unexplored and @c P
CzN it holds NYtcu R Unexplored.

48 minimal sets over a monotone predicate: enumeration and counting

input : an unsatisfiable set C of constraints
output: all MUSes and all MSSes of C

1 UnexploredÐ PpCq // a global variable

2 while Unexplored � H do
3 Kmss, Kmus Ð buildAndSearchChainpq // Algorithm 4.3

4 if Kmus is not null then
5 crits Ð collect minable critical constraints for Kmus

6 U Ð shrinkpKmus, critsq // black-box single MUS extraction subroutine

7 output U
8 UnexploredÐ UnexploredztN|N � Uu
9 if Kmss is not null then
10 conflicts Ð collect minable conflicting constraints for Kmss

11 S Ð growpKmss, conflictsq // black-box single MSS extraction subroutine

12 UnexploredÐ UnexploredztN|N � Su

Algorithm 4.2: Domain agnostic MUS enumeration algorithm TOME.

isfiability function implies that K has either a local MUS, a local MSS,
or both. They are defined as follows:

1. If all elements of K are satisfiable, then K has no local MUS and
Nk is the local MSS of K.

2. If all elements of K are unsatisfiable, then K has no local MSS and
N1 is the local MUS of K.

3. Otherwise, there exists j such that all of N1, . . . , Nj are satisfiable
and all of Nj�1, . . . , Nk are unsatisfiable. In this case, Nj is the local
MSS of K and Nj�1 is the local MUS of K.

TOME uses the local MUSes and local MSSes as u-seeds and s-
seeds for the shrinking and growing procedures, respectively. The
workflow of TOME is shown in Algorithm 4.2. The computation
starts by initializing the set Unexplored to PpCq. Each iteration first
calls the procedure buildAndSearchChain that builds an unexplored
chain and returns the local MSS Kmss and the local MUS Kmus of the
chain. If Kmus is defined, the algorithm then collects the minable
critical constraints for Kmus, shrinks it to an MUS, and updates the
set Unexplored. Similarly, if Kmss is defined, the algorithm collects
the minable conflicting constraints for Kmss, grows it to an MSS, and
again updates the set Unexplored. The enumeration of all MUSes
and all MSSes is completed once there are no more unexplored sub-
sets.

4.3.2 Building and Searching Unexplored Chains

The procedure buildAndSearchChain builds an unexplored chain K �
xN1, . . . , Nky, identifies its local MSS Kmss and its local MUS Kmus,
and returns the pair Kmss, Kmus.

The procedure (shown in Algorithm 4.3) starts by picking the
starting node N1 of the chain, i.e., a minimal unexplored subset. Sub-

domain agnostic mus enumeration 49

1 N1 Ð a minimal unexplored subset of C
2 if not checkSat(N1) then
3 return null, N1

4 Nk Ð a maximal unexplored subset of C such that N1 � Nk

5 if checkSat(Nk) then
6 return Nk, null
7 K Ð build an unexplored chain xN1, � � � , Nky

8 Kmss, Kmus Ð find the local MSS and the local MUS of K using binary search
9 return Kmss, Kmus

Algorithm 4.3: buildAndSearchChainpq

sequently, N1 is checked for satisfiability. If N1 is unsatisfiable, then
every chain that starts with N1 contains only unsatisfiable nodes.
Thus, the procedure terminates and returns the pair pnull, N1q. Oth-
erwise, the procedure identifies the node Nk: it picks a maximal un-
explored subset Nk such that N1 � Nk, and checks Nk for satisfiabil-
ity.3 If Nk is satisfiable, the procedure returns the pair pNk, nullq. Fi- 3 The details on how we actually

obtain the minimal, maximal, and
other specific unexplored subsets from
Unexplored were described in Sec-
tion 2.3.2.

nally, if N1 is satisfiable and Nk is unsatisfiable, the procedure builds
a chain K � xN1, N2, . . . , Nk�1, Nky and finds and returns its local
MSS Kmss and its local MUS Kmus; the details are described below.

Recall that the chain K can be divided in two parts: xN1, . . . , Njy

and xNj�1, . . . , Nky, where N1, . . . , Nj are satisfiable and Nj�1, . . . , Nk

are unsatisfiable. Therefore, we find the local MSS Nmss � Nj and
the local MUS Nmus � Nj�1 via a binary search procedure while
performing only Oplog2 |K|q satisfiability checks.

As for building the chain, we obtain the intermediate nodes N2,
. . . , Nk�1 of K by adding one by one the constraints from NkzN1 to
N1. The constrains are added in the ascending order imposed by the
numbering of the constraints, i.e., c1 c2 � � � cn. For example,
given N1 � tc1, c5u and Nk � tc1, c2, c4, c5, c6u, we build the chain
xtc1, c5u, tc1, c2, c5u, tc1, c2, c4, c5u, tc1, c2, c4, c5, c6uy. Such an ordering
has a slight advantage over other orderings; for each position on the
chain, we can easily compute the set of constraints that belongs to
that position. Thus, we do not need to build the chain explicitly.
Instead, we compute the sets of constraints that are checked for sat-
isfiability on the fly during the binary search.

Note that the order of the intermediate nodes of the chain highly
affects the position of the local MUS and the local MSS on the chain,
and thus also the size of the local MUS and local MSS. For exam-
ple, assume that C is a set of Boolean clauses, N1 � tc1 � a1u and
Nk � tc1 � a1, c2 � a2, c3 � a3, c4 � a4, c5 � a1u. N1 is satisfi-
able whereas Nk is unsatisfiable due to the presence of c1 and c5 that
contradict each other. The position of the local MUS depends on the
position of c5 on the chain (c1 is fixed to be presented in N1). Since
the size of the u-seed (local MUS) and s-seed (local MSS) highly in-
fluences the complexity of shrinking and growing, respectively, one
might tend to minimize the size of either local MUSes or local MSSes

50 minimal sets over a monotone predicate: enumeration and counting

(in dependence on the relative complexity of shrinking and growing
in a particular constraint domain). However, all the intermediate
nodes are unexplored and thus the most suitable ordering cannot be
determined in advance. Yet, there is a space for some domain spe-
cific heuristics that at least tend to minimize the size (location) of
the local MUSes/MSSes. For example, in the case of Boolean CNF
domain, unsatisfiability emerges from a presence of opposite literals
(e.g. a and a), thus, to minimize the size of the local MUS, one
might tend to push clauses with many opposite literals to the begin-
ning of the chain. A study of such heuristics is one of the possible
directions for our future work.

4.3.3 Example Execution of TOME

Let us now demonstrate the execution of TOME on the set C of four
Boolean clauses that we used in the previous examples: c1 � a,
c2 � a, c3 � b, and c4 � a _ b. Figure 4.1 shows the values
of the control variables of TOME in the individual iterations of the
algorithm and also illustrates the current exploration state of PpCq
(i.e., the set Unexplored). Moreover, we use the blue color to high-
light unexplored chains that are processed, and we also highlight the
starting and ending nodes of the chains. We encode subsets of C as
bit-vectors. For example, the subset tc1, c3, c4u is written as 1011.

4.3.4 Optimizations

Let us now describe various optimizations to the base algorithm.
First, recall that every maximal unexplored subset that is satisfiable
is an MSS, and dually every minimal unexplored subset that is un-
satisfiable is an MUS (Observations 2.12 and 2.13). Thus, in TOME,
if a whole unexplored chain K � xN1, . . . , Nky is unsatisfiable, then
its local MUS Kmus � N1 is necessarily a (global) MUS. Dually, if the
whole K is satisfiable, then its local MSS Kmss � Nk is a (global) MSS.
Thus, in these situations, we can skip the shrinking or growing and
immediately output the MUS or MSS, respectively.

Another slight improvement can be made in the case where both
the local MUS Kmus and the local MSS Kmss are found on an unex-
plored chain. Since Kmus � Kmss Y tcu for c P Kmus, the constraint c
is critical for Kmus and conflicting for Kmss. Thus, we might add it
to the set of critical and conflicting constraints when shrinking Kmus

and growing Kmss, respectively.
Other improvements can be made if we are interested only in the

MUS enumeration or only in the MSS enumeration. First, when we
identify an MUS M, then from the definition of an MUS, we know
that all subsets of M are satisfiable. Thus, when we are updating the
set Unexplored in line 8 in Algorithm 4.2, we can remove not just the
supersets of M but also its subsets. Note that by doing so, we might
exclude an MSS from the further computation. Therefore, we can do
this only if we do not require the algorithm to identify all MSSes.

domain agnostic mus enumeration 51

I. iteration
– N1 � 0000, found to be satisfiable
– Nk � 1111, found to be unsatisfiable
– unex. chain: K � x0000, 1000, 1100, 1110, 1111y
– local MUS Kmus � 1100, crits � H,
shrunk to 1100
– local MSS Kmss � 1000, conflicts � H,
grown to 1010 00000000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

11111111

II. iteration
– N1 � 0001, found to be satisfiable
– Nk � 1011, found to be unsatisfiable
– unex. chain: K � x0001, 1001, 1011y
– local MUS Kmus � 1011, crits � tc4u,
shrunk to 1011
– local MSS Kmss � 1001, conflicts � tc2u,
grown to 1001 0000

01001000 0010 00010001

1100 1010 1001 0110 0101 0011

1110 1101 10111011 0111

1111

III. iteration
– N1 � 0011, found to be satisfiable
– Nk � 0111, found to be satisfiable
– unex. chain: not built
– local MUS undefined
– local MSS Kmss � 0111, conflicts � tc1u,
grown to 0111

0000

01001000 0010 0001

1100 1010 1001 0110 0101 00110011

1110 1101 1011 01110111

1111

Figure 4.1: An example execu-
tion of TOME

Dually, if we are not interested in identifying all MUSes, we can also
remove all supersets of all MSSes that are found.

Moreover, if we are interested just in an MUS enumeration, then
we can omit growing local MSSes because the growing can be very
time demanding and thus slow down the MUS enumeration. Yet,
on the other hand, note that it is the explored satisfiable subsets that
allow us to collect minable critical constraints. Therefore, identifica-
tion of satisfiable subsets might significantly speed up the shrinking
procedure and consequently speed up the overall MUS enumeration.
The choice of whether to grow local MSSes or not thus depends on
the particular constraint domain where TOME is applied and on the
relative price of growing and the gain given by collecting critical con-
straints. Again, we can dually apply the same if we are interested
only in MSS enumeration.

Finally, there are several domain specific optimizations that we
want to discuss since every domain agnostic algorithm (including
TOME) is eventually applied in a particular constraint domain. In
some constraint domains, such as SAT or SMT, the contemporary
satisfiability solvers are often able to provide an unsat core when the
input set N of constraints is unsatisfiable and a model (satisfying vari-
able assignment) when N is satisfiable. The unsat core is often small,

52 minimal sets over a monotone predicate: enumeration and counting

yet not necessarily minimal, unsatisfiable subset of N. In TOME, we
can use it to reduce the size of a local MUS before we shrink it, i.e.,
instead of shrinking the local MUS we shrink an unsat core of the
local MUS. As for the models, it is often the case that a model π of
N satisfies not just all the constraints contained in N but also some
constraints in CzN. In particular, by the model extension of N w.r.t. π

we denote the set tc|c P C and π satisfies cu.4 In TOME, we can use 4 Recall that in Definitions 2.3 and 2.4,
we have properly defined the concepts
of an unsat core and a model extension
for the SAT domain, i.e., the case when
C contains Boolean clauses.

model extensions to enlarge local MSSes before we grow them, i.e.,
instead of growing local MSSes, we grow their model extensions.

4.4 ReMUS

In this section, we describe our another seed-shrink domain agnostic
MUS enumeration algorithm called ReMUS [Bendík et al., 2018b].
The name of the algorithm is an acronym for Recursive enumeration
of Minimal Unsatisfiable Subsets.

4.4.1 Basic Idea

Let N be a u-seed and crits a set of constraints that are minable criti-
cal for N. Recall that, in general, the larger the difference |N| � |crits|
is, the harder it is to shrink N. Therefore, an efficient seed-shrink
algorithm should search for u-seeds that are small and for which
there are many minable critical constraints. To achieve this, ReMUS

searches for u-seeds in a so-called search space. A search space is an
unsatisfiable subset of C. Intuitively, the smaller (in terms of car-
dinality) a search space is, the smaller u-seeds can be found in the
search space. ReMUS tries to identify, and then work, in a search
space that is relatively small and also contains many minable critical
constraints for u-seeds found within.

Initially, the search space is the whole C; during the computation,
we recursively refine the search space. We process every search space
S iteratively. In each iteration, we pick a maximal unexplored subset
Smax of S and check it for satisfiability. Based on the result of the
satisfiability query, one of the following is performed.

If Smax is unsatisfiable, we collect the minable critical constraints
for Smax, shrink it to an MUS Smus, and mark the MUS as explored.
Subsequently, we choose a search space T such that Smus � T � Smax,
and recursively process T. Note that any u-seed found within T is
smaller than the previous u-seed Smax since T � Smax. Therefore, the
deeper is the recursion, the smaller are the identified u-seeds and,
in general, the easier it is to perform the shrinks. We illustrate the
search-space reduction in Figure 4.2. Once the recursive call termi-
nates, we continue with the next iteration over the search space S.

If Smax is satisfiable, we remove Smax together with all its subsets
from Unexplored. Recall that every maximal unexplored subset that
is satisfiable is an MSS (Observation 2.12), thus Smax is an MSS of S.
Also, since Smax is an MSS of S, then every c P SzSmax is critical for
SmaxYtcu. Furthermore, since Smax was removed from Unexplored, c

domain agnostic mus enumeration 53

(a) (b)

Figure 4.2: Illustration of
ReMUS’s search space reduc-
tion. Both figures show a di-
vision of PpCq into explored
satisfiable subsets (green bot-
tom part), unexplored sub-
sets (white middle part), and
explored unsatisfiable subsets
(top red part). Figure (a) illus-
trates a search space S, max-
imal unexplored subsets of S
(the blue circles), and a maxi-
mal unexplored subset Smax of
S. In this example, Smax is un-
satisfiable, thus ReMUS shrinks
Smax into an MUS Smus and then
chooses T, Smus � T � Smax, as
a next search space. This is il-
lustrated in Figure (b). We also
illustrate maximal unexplored
subsets (blue circles) of T in
Figure (b).

is also minable critical for every u-seed contained in SmaxYtcu. Based
on this observation, we recursively process the search space Smax Y

tcu for every c P SzSmax. Note that these recursive calls also support
the tendency to identify small u-seeds since Smax Y tcu � S. Once
all the recursive calls terminate, we continue with the next iteration
over S. The processing of a search space S terminates once PpSq X
Unexplored � H.

4.4.2 Complete Description

We provide the complete description of ReMUS in Algorithm 4.4. The
computation starts with the procedure init that initializes all subsets
of C to be unexplored, i.e. Unexplored � PpCq, and then calls the
procedure processSearchSpace(S). The procedure takes as an input a
search space S and processes it as described in the previous section.
Initially, processSearchSpace is called on the whole C. Bellow, we
provide more details on the recursive calls of processSearchSpace.

There are two kinds of recursive calls. The one that is based on
a satisfiable maximal unexplored subset Smax is performed to move
ReMUS into a search space with more minable critical constraints.
The other kind of recursion that is based on an unsatisfiable maximal
unexplored subset Smax moves ReMUS into a smaller search space,
i.e., to a search space with smaller u-seeds. Naturally, there is a trade-
off between the reduction of the cardinality of the search space and
the number of u-seeds that are presented in the search space. The
best trade-off differs for particular constraint domains and for par-
ticular types of benchmarks. If a benchmark contains a lot of small
MUSes, then even a large reduction of the search space might still
preserve many u-seeds in the search space. On the other hand, if a
benchmark contains only a few MUSes, a fast reduction of the search
space soon eliminates all available u-seeds (and yet might keep a lot
of s-seeds in the search space). Therefore, in ReMUS (Algorithm 4.4,
lines 13 and 14), we do not fix the rate of the search space reduction.
We choose a search space T such that |T| � rf � |Smax|, where rf is a
user defined parameter value ranging from 0 to 1. The closer is the
value of rf to zero, the more reduced is the cardinality of the search

54 minimal sets over a monotone predicate: enumeration and counting

1 Function init(C):
input : an unsatisfiable set C of constraints
output: all MUSes of C

2 UnexploredÐ PpCq // a global variable

3 processSearchSpace(C)
1 Function processSearchSpace(S):
2 while UnexploredXPpSq � H do
3 Smax Ð a maximal unexplored subset of S
4 if checkSatpSmaxq then
5 UnexploredÐ UnexploredztN|N � Smaxu

6 for each c P SzSmax do
7 processSearchSpace(Smax Y tcu)
8 else
9 crits Ð collect minable critical constraints for Smax

10 Smus Ð shrinkpSmax, critsq // black-box single MUS extraction subroutine

11 output Smus

12 UnexploredÐ UnexploredztN|N � Smus or N � Smusu

13 if |Smus| rf � |Smax| then
14 T Ð subset such that Smus � T � Smax, |T| � rf � |Smax|

15 processSearchSpace(T)

Algorithm 4.4: Domain agnostic MUS enumeration algorithm ReMUS.

space in each of the recursive calls. In our experiments (Section 4.7),
we set rf to 0.9. We build T by adding the corresponding number
of constraints from Smax to Smus. The constraints are chosen in the
ascending order imposed by the numbering of the constraints, i.e.,
c1 c2 � � � cn. Note that it might happen that Smus ¥ rf � |Smax|.
In such a case, we avoid the recursive call altogether.

The set Unexplored is shared among the individual recursive calls.
In particular, if ReMUS marks an MUS Smus as explored then all of its
supersets w.r.t. the whole PpCq become explored. Also, let us note
that a maximal unexplored subset Smax of a search space S, S � C,
might not be a maximal unexplored subset of C.

4.4.3 Optimizations

Let us now discuss several optimizations of ReMUS. First, note that
we can get into a search space S that contains only a few MUSes.
However, to backtrack from S, we first need to explore the whole
PpSq, and this might require us to check a large number of maximal
unexplored subsets for satisfiability. Consequently, we can be stuck
in S for a long time without outputting any MUSes. To prevent
this behavior, we detect that S contains a low number of MUSes
and pre-emptively backtrack from the recursion. Currently, we use
a simple heuristic to detect such a situation. In each local search
space S, S � C, we count the number k of subsequently performed
satisfiability checks with the satisfiable result. Each identified u-seed

domain agnostic mus enumeration 55

resets k to 0. If k exceeds a user-predefined value, we backtrack from
S. In our experimental evaluation (Section 4.7), we set k to 10.

Other optimizations that we propose are purely domain specific.
Similarly to the case of TOME (Section 4.3.4), we can exploit unsat
cores and model extensions in the constraint domains where models
and unsat cores are provided by the satisfiability solvers. In par-
ticular, when a maximal unexplored subset Smax is found to be un-
satisfiable, we obtain an unsat core of Smax, collect minable critical
constraints for the unsat core, and shrink the unsat core instead of
shrinking the whole Smax. In the other case, where Smax is satisfi-
able, we obtain a model π for Smax and compute the model extension
E � tc|c P C and π satisfies cu. Subsequently, we mark E and all of its
subsets as explored. Note that E is computed w.r.t. the whole C, i.e.,
E can outreach the local search space S, and thus |E| can be much
larger than |Smax|. Also, note that w.r.t. |E| � |Smax|, the number 2|E|

of subsets of E is exponentially larger than the number 2|Smax| of sub-
sets of Smax. Thus, the use of model extensions significantly speeds
up the exploration of PpCq.

4.5 Related Work

The early domain agnostic MUS enumeration algorithms were based
on the explicit examination of every subset of the unsatisfiable con-
straint system. As far as we know, the MUS enumeration was pio-
neered by Hou [Hou, 1994] in the field of diagnosis. Hou’s algorithm
checks every subset for satisfiability, starting with the whole set of
constraints and exploring its power-set in a tree-like structure. Also,
some pruning rules that allow skipping irrelevant branches are pre-
sented. This approach was revisited and further improved in [Han
and Lee, 1999] and [de la Banda et al., 2003]. Another approach
using step-by-step power-set exploration was proposed in [Barnat
et al., 2016]. The authors of [Barnat et al., 2016] focus on constraints
expressed using LTL formulas; however, their algorithm can be used
for any kind of constraints. Explicit exploration of the power-set is
the bottleneck of all of the above-mentioned algorithms as the size
of the power-set is exponential to the number of constraints in the
system.

Later algorithms were based on different kinds of a symbolic ex-
ploration of the power-set. All the algorithms somehow represent
the set Unexplored of all unexplored subsets (to be able to exclude
already explored MUSes from the computation). Based on the rep-
resentation of Unexplored, we can divide the algorithms into two
groups. One group exploits the minimal hitting set duality between
MUSes and MCSes (Observation 2.6). The other group maintains the
formula map� ^map� (the same as we do, first proposed by Liffiton
et al. [Liffiton et al., 2016] and described in Section 2.3.2).

56 minimal sets over a monotone predicate: enumeration and counting

input : an unsatisfiable set C of constraints
output: all MUSes of C

1 kMUSes Ð kMCSes Ð S ÐH

2 repeat
3 kMCSes Ð CzgrowpSq
4 N Ð compute all minimal hitting sets of kMCSes
5 S ÐH

6 for K P N zkMUSes do
7 if checkSatpKq then
8 S Ð K
9 break

10 else
11 kMUSes Ð kMUSesY tKu
12 output K
13 until S � H

Algorithm 4.5: DAA.

4.5.1 Minimal Hitting Set Based Approaches

Based on our knowledge, the first domain agnostic algorithm that
explores the power-set in a symbolic way, and thus can handle input
sets with even millions of constraints, was proposed by Bailey and
Stuckey [Bailey and Stuckey, 2005] and it is called DAA. Further
improvements to DAA were done by Stern et al. [Stern et al., 2012]
and presented as an algorithm called PDDS. The two algorithms
during their computation identify both MUSes and MCSes of the
input constraint set C and store all the already identified MUSes and
MCSes in two sets, kMUSes and kMCSes, respectively. To identify
individual MUSes, DAA and PDDS exploit the minimal hitting set
duality between MUSes and MCSes. Recall that if a set kMCSes is
the set of all MCSes of the input formula C, then every minimal
hitting set of kMCSes is an MUS. If it is the case that kMCSes is only a
subset of all MCSes of C, then every minimal hitting set of kMCSes is
either satisfiable or it is an MUS [Bailey and Stuckey, 2005]. Based on
this observation, DAA repeatedly computes a minimal hitting set N
of the already known MCSes kMCSes and checks it for satisfiability.
If N is unsatisfiable, it is guaranteed to be an MUS. In the other
case, when N is satisfiable, DAA grows N to an MSS and adds the
complement of the MSS (i.e., an MCS) to the set kMCSes. PDDS is
based on a dual approach: it computes minimal hitting sets of the set
kMUSes of known MUSes, marks the satisfiable hitting sets as MSSes
(resp. their complements as MCSes), and shrinks the unsatisfiable
hitting sets to MUSes. The exact behavior of the two algorithms is
the following.

DAA is described in Algorithm 4.5. The computation starts by ini-
tializing the sets kMUSes and kMCSes to empty sets, and by creating
variable S that will be used to store an s-seed for the growing pro-
cedure. Initially, S � H since this is the only subset of C that is

domain agnostic mus enumeration 57

input : an unsatisfiable set C of constraints
input : a set kMUSes of MUSes of C
input : a set kMCSes of MCSes of C
output: all MUSes of C

1 N Ð compute a minimal hitting set N of kMUSes such that CzN is unexplored
2 while N is not null do
3 if checkSat(CzN) then
4 kMCSes Ð kMCSesY tNu
5 else
6 M Ð shrink(CzN)
7 output M
8 kMUSes Ð kMUSesY tMu
9 N Ð compute a minimal hitting set N of kMUSes such that CzN is unexplored

Algorithm 4.6: PDDS.

known to be satisfiable. Subsequently, DAA proceeds to two nested
loops that form the core part of the algorithm. The outer loop starts
by growing the s-seed S into an MSS M of C and adding the com-
plementary MCS CzM to kMCSes. Then, DAA computes the set N
of all minimal hitting sets of kMCSes, and starts iterating over the
new possible candidates for MUSes: N zkMUSes. Each candidate
K P N zkMUSes is checked for satisfiability. If K is unsatisfiable, then
it is necessarily an MUS of C and thus is added to kMUSes. In the
other case, if K is satisfiable, then the inner loop terminates and K
becomes the new s-seed for the growing in the next iteration of the
outer loop. The computation of the algorithm terminates once the
algorithm fails to find a new s-seed; at this moment, it is guaranteed
that all MUSes have been detected.

A weak spot of DAA is the computation of minimal hitting sets. In
general, there can be up to exponentially many minimal hitting sets
of kMCSes w.r.t. |C|. Since DAA computes in each iteration all the
minimal hitting sets, it can easily run out of memory.

PDDS is described in Algorithm 4.6. The algorithm takes as an
input (possibly empty) sets kMUSes and kMCSes of already known
MUSes and MCSes, and iteratively identifies the remaining ones.
Each iteration of PDDS starts by computing a minimal hitting set N
of kMUSes such that CzN is unexplored, and checking N’s comple-
ment K � CzN for satisfiability. If K is satisfiable, then N is neces-
sarily an MCS of C; otherwise, K is shrunk to an MUS of C. After
that, the algorithm continues with the next iteration. The computa-
tion terminates once there is no unexplored minimal hitting set of the
already identified MUSes; at this point, all subsets of C are explored.

The authors of PDDS note that the algorithm works also in the
dual way. That is, instead of computing minimal hitting sets of
kMUSes and shrinking the unsatisfiable ones, one can compute min-
imal hitting sets of kMCSes and grow the satisfiable ones, similarly
to DAA. The main difference between PDDS and DAA is the num-
ber of computed minimal hitting sets per iteration: PDDS computes

58 minimal sets over a monotone predicate: enumeration and counting

only one minimal hitting set, whereas DAA computes all the minimal
hitting sets. Consequently, PDDS does not suffer from such memory
issues as DAA does.

Note that neither the authors of DAA nor the authors of PDDS

use the term unexplored subsets in their work. Thus, let us clarify
what are the unexplored subsets in the case of the two algorithms.
A subset N of C is unexplored (i.e., N P Unexplored) iff 1) there is
no MUS P P kMUSes such that N � P and 2) no MCS Q P kMCSes
such that N � CzQ (since CzQ is an MSS). Note that if a set N is
a minimal hitting set of kMCSes such that N R kMUSes, then N is
unexplored. In particular, if N is unsatisfiable, then by the minimal
hitting set duality N is an MUS, and since N R kMUSes, it is an
unexplored MUS. In the other case, when N is satisfiable, since N is
a hitting set of kMCSes, there is no Q P kMCSes such that N � CzQ
(thus N is unexplored satisfiable subset). Furthermore, since N is a
minimal hitting set of kMCSes, it holds that N is a minimal unexplored
subset (this was already noted in [Liffiton et al., 2016]). Therefore, the
sets that DAA checks for satisfiability are in fact minimal unexplored
subsets. Dually, PDDS checks for satisfiability maximal unexplored
subsets.

4.5.2 MARCO

Liffiton and Malik [Liffiton and Malik, 2013] and Previti and Marques-
Silva [Previti and Marques-Silva, 2013] independently developed two
nearly identical algorithms: MARCO [Liffiton and Malik, 2013] and
eMUS [Previti and Marques-Silva, 2013]. Both the algorithms were
later merged and presented under the name MARCO in [Liffiton
et al., 2016]. Currently, the algorithm is perhaps the most widely
known domain agnostic MUS enumeration solution. Similarly as
DAA and PDDS, MARCO also identifies both MUSes and MCSes
(MSSes).

Similarly as TOME, MARCO implements both the seed-shrink and
seed-grow schemes. It starts by setting Unexplored to PpCq and then
proceeds iteratively. Each iteration starts by getting an unexplored
subset S and checking S for satisfiability. If S is satisfiable, i.e., an
s-seed, then it is grown into an MSS. In the other case where S is
unsatisfiable, i.e, a u-seed, S is shrunk into an MUS. In both cases,
the set Unexplored is appropriately updated. The computation ter-
minates once there is no more unexplored subset.

The authors of MARCO proposed three different strategies for se-
lecting unexplored subsets. The first strategy is to pick an unex-
plored subset at random, the second strategy is to pick a minimal
unexplored subset, and the third strategy is to pick a maximal unex-
plored subset. Recall that a minimal unexplored subset that is unsat-
isfiable is an MUS (Observation 2.13). Dually, a maximal unexplored
subset that is satisfiable is an MSS (Observation 2.12). Therefore, in
the second strategy, the set S is either satisfiable and it is grown to an
MSS, or it is guaranteed to be an MUS, and thus the shrink is omit-

domain agnostic mus enumeration 59

ted. Similarly, in the third strategy, the set S is either unsatisfiable
and it is shrunk to an MUS, or it is guaranteed to be an MSS, so the
grown is omitted. The authors of MARCO proposed the second strat-
egy to be used when the goal is to bias the enumeration for MSSes
and the third strategy when the goal is to bias the enumeration for
MUSes. At the first glance, one might expect the second strategy to
be better for an MUS enumeration since we can skip the shrinking.
However, in practice, unsatisfiable subsets of C are naturally more
concentrated among the larger subsets of C and, dually, satisfiable
subsets are naturally more concentrated among the smaller subsets
of C. Since maximal (minimal) unexplored subsets are usually very
large (small), it is mostly the case that the maximal (minimal) unex-
plored subsets are unsatisfiable (satisfiable). Consequently, MARCO

usually quickly finds a u-seed among the maximal unexplored sub-
sets and, thus, is able to perform shrinks (and identify MUSes) at a
relatively steady rate.

Note that the variant of MARCO that is optimized towards MUS
enumeration works in a similar way as PDDS, since maximal un-
explored subsets used in MARCO are equivalent to the unexplored
complements of minimal hitting sets of kMUSes used in PDDS. How-
ever, the authors of PDDS do not specify how to obtain the mini-
mal hitting sets; they state that it can be done by any available ap-
proach. On the other hand, the authors of MARCO were the first who
proposed to use the symbolic representation of unexplored subsets
based on the formula map� ^map�. Their symbolic representation
was subsequently adopted by many other MSS or MUS enumera-
tion algorithms including the our ones (please, refer back to Sec-
tion 2.3.2 for details). Furthermore, authors of MARCO proposed
to collect minable critical/conflicting constraints for u-seeds/s-seeds
before shrinking/growing them. Also, same as in our algorithms,
MARCO employs unsat cores and model extensions to reduce and in-
crease the size of the u-seeds and s-seeds, respectively, in constraint
domains where unsat cores and model extensions are provided by a
satisfiability solver. For a more detailed comparison of MARCO and
PDDS, please refer to [Liffiton et al., 2016].

Besides the above mentioned domain agnostic MUS enumeration
algorithms, there have been proposed many MUS enumeration algo-
rithms that are tailored for a particular constraint domain (e.g., [Arif
et al., 2015b, Bacchus and Katsirelos, 2015, 2016, Narodytska et al.,
2018]). These algorithms extensively exploit specific properties of the
particular domain and cannot be used in other domains (we discuss
some of these algorithms later in Section 5.3). Also, there have been
proposed several algorithms that enumerate MUSes offline, i.e., the
algorithms either find all MUSes within a given time limit or find no
MUS at all. For example, CAMUS [Liffiton and Sakallah, 2008] first
identifies all MCSes of C and then uses the minimal hitting set du-
ality between MUSes and MCSes to obtain the MUSes from the MC-
Ses. The problem with CAMUS is that if C contains a large number
of MCSes, then no MUS is identified within the time limit. Finally,

60 minimal sets over a monotone predicate: enumeration and counting

there have been several studies on domain agnostic algorithms for
a single MUS extraction. For instance, see the work by Janota and
Marques-Silva [Janota and Marques-Silva, 2016] on the complexity of
domain agnostic single MUS extraction.

4.6 MUST: A Domain Agnostic MUS Enumeration Tool

In this section, we describe our tool that implements TOME and
ReMUS. Before we jump into technical details, let us first remind
what is the purpose of developing domain agnostic MUS enumera-
tion algorithms. As opposed to a domain specific algorithm that is
highly optimized towards a particular constraint domain, the pur-
pose of a domain agnostic algorithm is mainly to provide a ready-to-
use solution for an arbitrary constraint domain where MUSes might
eventually find an application. As we have discussed in the pre-
vious sections, there have been proposed several domain agnostic
MUS enumeration algorithms in the past two decades. Yet, there is
almost no available domain agnostic tool implementation of the algo-
rithms that would actually serve as a ready-to-use solution for an
arbitrary constraint domain. Papers that present existing domain
agnostic algorithms usually provide results of an experimental eval-
uation, however, it is often the case that the implementation is ei-
ther not publicly available [Barnat et al., 2016, Bailey and Stuckey,
2005], or there is a hard-coded support for a particular constraint do-
main [Bendík et al., 2018c, Ghassabani et al., 2017b]. The closest to a
domain agnostic tool is a tool by Liffiton et al. [Liffiton et al., 2016]
where the authors implement their domain agnostic MUS enumera-
tion algorithm MARCO. Their tool currently supports the SAT and
the SMT domains and can be relatively easily extended to support
also another constraint domains. However, our experimental eval-
uation [Bendík and Černá, 2018] of contemporary domain agnostic
algorithms in various constraint domains has shown that the effi-
ciency of the algorithms (including MARCO) varies a lot in different
constraint domains. There is no silver bullet algorithm that would be
efficient in all the domains. Thus, to deal with a particular constraint
domain, one has to wisely choose from individual algorithms.

To close this gap, we developed an MUS enumeration tool called
MUST [Bendík and Černá, 2020a]. The tool implements three domain
agnostic algorithms based on the seed-shrink scheme: MARCO [Liffi-
ton et al., 2016], and our TOME and ReMUS. Currently, the tool pro-
vides support for 3 constraint domains: SAT, SMT, and LTL. More-
over, due to a modular architecture of the tool, the tool can be easily
extended to support another constraint domain: it requires only to
implement an API for communication with a satisfiability solver for
the constraint domain. Therefore, MUST can be seen as the first do-
main agnostic MUS enumeration tool: the user of the tool can easily
adapt and apply the tool in an arbitrary constraint domain. The tool
is implemented in C++ and it is available at:

domain agnostic mus enumeration 61

https://github.com/jar-ben/mustool

In the following, we briefly describe the architecture of the tool
(Section 4.6.1), discuss how are the currently supported satisfiability
solvers implemented and how to add a support for additional con-
straint domains (Section 4.6.3), and how to install and run the tool
(Section 4.6.3). An experimental comparison of the tool with other
(even domain specific) MUS enumeration tools is provided in Sec-
tion 4.7.

4.6.1 Logical Components

The tool consists of six logical components: SatSolver, Explorer, Mas-
ter, Algorithms, Heuristics, and Initializer.

SatSolver SatSolver (declared in SatSolver.h) is the only domain spe-
cific part of our tool. It provides the functionality for checking sets
of constraints for satisfiability, and implements the shrinking proce-
dure. Also, SatSolver copes with parsing the input set of constraints
(provided by the user) and exporting the identified MUSes in par-
ticular domain specific formats. A more detailed description of Sat-
Solver is provided in Section 4.6.2.

Explorer Explorer (declared in Explorer.h) stores the set Unexplored

of all unexplored subsets and handles related operations including:
marking sets as explored, obtaining unexplored subsets, and mining
critical and conflicting constraints.

Master Master (declared in Master.h) is the coordinator of the whole
computation. In particular, it holds an instance of Explorer and an in-
stance of SatSolver and provides wrappers for calling their methods.
Moreover, it runs an MUS enumeration algorithm that is specified by
the user via a command line argument (see below).

Algorithms The algorithms, MARCO, TOME, and ReMUS are de-
clared in Master(.h) and implemented in marco.cpp, tome.cpp, and
remus.cpp, respectively. All calls to SatSolver and Explorer are made
via the wrappers defined in Master. This means that any improve-
ment to Explorer and especially to SatSolver (i.e. a more efficient
shrinking procedure or satisfiability solver) is immediately reflected
by all the algorithms.

Heuristics There are several heuristics that are bound to the wrap-
pers defined in Master, and thus can be exploited by all the three
algorithms. For example, in the wrapper for invoking the shrink-
ing procedure, we provide two heuristics for computing critical con-
straints for the set that is being shrunk. One of the two heuristics uses
Explorer to compute critical constraints based on the set Unexplored.
The other heuristic uses SatSolver to obtain additional critical con-
straints that cannot be mined from Unexplored.

Initializer Initializer (implemented in main.cpp) parses the command
line arguments provided by the user, and creates, sets-up, and runs
the Master.

https://github.com/jar-ben/mustool

62 minimal sets over a monotone predicate: enumeration and counting

4.6.2 SatSolver

SatSolver (declared in SatSolver.h) is an abstract class stating all the
domain specific functionality that needs to be implemented (in a de-
rived class) to support a particular constraint domain in our tool.
There are three methods that have to be implemented by every de-
rived class:

• toString(N) takes as an input a set N, N � C, and returns a
textual representation of the constraints contained in N (e.g. in
the SMT-LIB 2 format if N is a set of SMT constraints). We use
this method to output the identified MUSes.

• solve(N, core � False, extension � False) takes as an input a sub-
set N of C and returns True iff N is satisfiable and False otherwise.
Moreover, solve takes two optional Boolean parameters, core and
extension, with default values set to False. If core is set to True and
N is unsatisfiable, solve also finds an unsat core of N, i.e. an un-
satisfiable M such that M � N. Similarly, if extension is set to True
and N is satisfiable, solve finds a model extension of N, i.e. a satis-
fiable set M such that N � M � C. We use the unsat cores in our
tool to reduce seeds before shrinking. The extensions are used to
further prune the set Unexplored when an unexplored subset is
found to be satisfiable.

• constructor(filepath). Every derived class of SatSolver has to im-
plement its constructor. The constructor accepts a path filepath to
a file that specifies the input set C of constraints in some domain
specific format (e.g. SMT-LIB 2 for SMT formulae). We invoke
the constructor during the initialisation phase of our tool and its
goal is to parse the input set of constraints and internally store
the constraints for future manipulations. SatSolver is the only one
of the six logical components of our tool that directly works with
particular constraints of C. All the other components work just
with a bit-vector representation of subsets of C. For example, if
C � tc1, c2, c3, c4u is a set of four constraints and K � tc1, c2u,
the bitvector representation of K is 1100. Therefore, whenever an-
other component communicates with SatSolver, e.g. invokes the
procedure solve(N), it passes the bit-vector representation of N
to SatSolver and SatSolver converts it to particular constraints.

Besides the above three methods that have to be implemented by
every derived class, SatSolver defines and implements a method that
can be overridden by a derived class:

• shrink(N, crits) performs the shrinking, i.e. it takes an unsatis-
fiable set N together with a set crits of constraints that are critical
for N and returns an MUS of N. The default domain agnostic
implementation of this method is carried out by Algorithm 2.1
(Section 2.3.3).

Currently, our tool supports three constraint domains via the fol-
lowing four derived classes of SatSolver:

domain agnostic mus enumeration 63

• MSHandle (implemented in MSHandle.cpp) provides a function-
ality for the Boolean CNF domain, i.e. the set of constraints is a
set of Boolean clauses. The input and output format is the DI-
MACS CNF format. For shrinking, we integrate two single MUS
extraction tools: muser2 [Belov and Marques-Silva, 2012] and mc-
smus [Bacchus and Katsirelos, 2015]. Finally, we use miniSAT [Eén
and Sörensson, 2003] to implement the method solve. Besides
checking N for satisfiability, we also use miniSAT to obtain an
unsat core or a model extension of N. In particular, an unsat
core is directly provided by miniSAT. To get a model extension of
N, we obtain a model π of N from miniSAT and collect the set
tc|c P C^ π |ù cu of all constraints in C that are satisfied by π.

• Z3Handle (implemented in Z3Handle.cpp) can process SMT con-
straints represented in the SMT-LIB2 format. We use z3 [de Moura
and Bjørner, 2008] to parse the input and to implement solve.
Moreover, in the same way as in the case of MSHandle, we obtain
unsat cores from z3 and we also obtain models of satisfiables for-
mulas to compute their extensions. The shrinking is implemented
using our custom procedure.

• SpotHandle (implemented in SpotHandle.cpp) supports the LTL
domain. We use SPOT [Duret-Lutz et al., 2016] to implement
solve and the default domain agnostic implementation of shrink.
In this case, we do not provide support for computing non-trivial
unsat cores and non-trivial extension. Therefore, if an extension or
unsat core is required while calling solve(N), we simply use N
itself (N is a trivial unsat core/extension of N).

• NuxmvHandle (implemented in NuxmvHandle.cpp) is another al-
ternative for the LTL domain. It uses nuXmv [Cavada et al., 2014]
as a satisfiability solver, which is, based on our experience, much
more efficient than SPOT. However, nuXmv’s license5 is more re- 5 https://es-static.fbk.eu/tools/

nuxmv/index.php?n=Main.Licensestrictive than the SPOT’s license and thus not every user of our
tool might use it. In this case, we also do not support an extrac-
tion of non-trivial unsat cores and extensions.

If anyone wants to add support for another constraint domain to
our tool, it is enough to implement a derived class of SatSolver. For
example, the implementation of SpotHandle takes only 45 lines of
code, including several empty lines caused by formatting and lines
containing only closing brackets (“}”). Therefore, we claim our tool
to be indeed domain agnostic and ready-to-use solution for any con-
straint domain.

4.6.3 Installation and Execution of the Tool

The tool is actively maintained and the up-to-date installation and
usage instructions are available at: https://github.com/jar-ben/

mustool.
Briefly, our tool can be built either in lightweight settings with

support only for SAT domain, or with support also for the SMT

https://es-static.fbk.eu/tools/nuxmv/index.php?n=Main.License
https://es-static.fbk.eu/tools/nuxmv/index.php?n=Main.License
https://github.com/jar-ben/mustool
https://github.com/jar-ben/mustool

64 minimal sets over a monotone predicate: enumeration and counting

and/or LTL domains. Whereas in the SAT domain, we use min-
iSAT that can be built very quickly, the z3 and SPOT solvers that we
use in the SMT and LTL domains can take several hours to install.
Once you have installed all the solvers you want to use, our tool can
be simply built with an invocation of the command “make”.

To run our tool in its default settings, execute:

./must input_file,

where input_file specifies the input file of constraints, and it has
to have either .cnf, smt2, or .ltl extension. Based on the extension,
Master selects and uses an appropriate derived class of SatSolver. To
specify an MUS enumeration algorithm to be used, invoke the tool
by:

./must -a alg input_file,

where alg can be either marco, tome, or remus (the default one). To
see all the available settings, run

./must -h.

4.7 Experimental Evaluation

We now provide an experimental comparison of contemporary do-
main agnostic MUS enumeration algorithms MARCO, TOME, and
ReMUS. The comparison is done in three constraint domains: SAT,
SMT, and LTL. Note that we do not include the algorithm DAA in
the evaluation, although we have described it in Section 7.2. That is
because DAA has been already shown to be very inefficient in sev-
eral previous papers [Liffiton and Malik, 2013, Liffiton et al., 2016,
Bendík and Černá, 2018], and thus we rather devote the available
space to the analysis of the other algorithms. Finally, in the SAT
domain, we compare the three domain agnostic algorithms also with
the two contemporary approaches tailored to that constraint domain:
FLINT [Narodytska et al., 2018] and MCSMUS [Bacchus and Katsire-
los, 2016].

All experiments were run using a time limit of 3600 seconds and
computed on an AMD EPYC 7371 16-Core Processor, 1 TB memory
machine running Debian Linux 4.19.67-2. The comparison criterion
used in our evaluation is the number of identified MUSes within
the given time limit. Complete results are available in the online
appendix6. 6 https://www.fi.muni.cz/~xbendik/

phdThesis/

4.7.1 Implementations

Both ReMUS and TOME, with a support for all the three constraint
domains, are implemented in our MUS enumeration tool. We use
miniSAT [Eén and Sörensson, 2003], Z3 [de Moura and Bjørner, 2008],
and nuXmv [Cavada et al., 2014], as satisfiability solvers in the SAT,
SMT, and LTL domain, respectively. In the SAT domain, we use a
single MUS extraction subroutine of the MCSMUS tool [Bacchus and
Katsirelos, 2015] for shrinking; in the LTL and SMT domains, we use

https://www.fi.muni.cz/~xbendik/phdThesis/
https://www.fi.muni.cz/~xbendik/phdThesis/

domain agnostic mus enumeration 65

our custom shrinking procedure. Our tool is publicly available on
github:

https://github.com/jar-ben/mustool

In the case of MCSMUS, we used the latest (last commit in May
2019) publicly available implementation by George Katsirelos that is
available at:

https://bitbucket.org/gkatsi/mcsmus

FLINT was kindly provided to us by its author, Nina Narodytska.
As for MARCO, in the SAT and SMT domains, we used the latest
(version 2.0.1) publicly available implementation of MARCO by Mark
H. Liffiton:

https://sun.iwu.edu/%7emliffito/marco/

Since the implementation of MARCO by Liffiton does not support
the LTL domain, we have reimplemented MARCO in our MUS enu-
meration tool. The reimplementation is based on the original im-
plementation of MARCO by Liffiton; the core part of the algorithm
behaves exactly the same, we have just implemented a satisfiability
solver and a shrinking procedure for the LTL domain. In particular,
we used the same shrinking procedure and the same satisfiability
solver for MARCO as we did for ReMUS and TOME.

4.7.2 Boolean Domain

Benchmarks We used a collection of 291 Boolean CNF benchmarks
that were taken from the MUS track of the SAT 2011 Competition7. 7 http://www.cril.univ-artois.fr/

SAT11/This collection has been used in many papers, e.g., [Narodytska et al.,
2018, Liffiton et al., 2016, Bacchus and Katsirelos, 2016, Bendík et al.,
2016b, 2018b], that focus on MUS enumeration. The benchmarks
range in their size from 70 to 16 million constraints and use from
26 to 4.4 million variables. In the case of 27 benchmarks, all the
evaluated algorithms identified all the MUSes within the given time
limit. Since the comparison criterion of our evaluation is the number
of identified MUSes, the 27 benchmarks are irrelevant for the eval-
uation (all algorithms found the same number of MUSes for these
benchmarks). Therefore, only the remaining 264 benchmarks are the
subject of our evaluation.

Results In Figure 4.3, we provide scatter plots that compare pair-wise
individual algorithms. Each point in a scatter plot corresponds to a
single benchmark and shows the number of identified MUSes by the
two algorithms. The x-coordinate of a point is given by the algorithm
that labels the x-axis, and the y-coordinate of a point is determined
by the algorithm that labels the y-axis. Intuitively, points below the
diagonal favour the algorithm that labels the x-axis and vice versa.
Since the plots are in a log-scale, i.e., they cannot show plots with
a zero coordinate (zero MUSes), we lifted the points with a zero
coordinate to the first coordinate. In other words, points that lay ex-
actly on the axis represent benchmarks where one of the algorithms

https://github.com/jar-ben/mustool
https://bitbucket.org/gkatsi/mcsmus
https://sun.iwu.edu/%7emliffito/marco/
http://www.cril.univ-artois.fr/SAT11/
http://www.cril.univ-artois.fr/SAT11/

66 minimal sets over a monotone predicate: enumeration and counting

100

101

102

103

104

105

106

107

100101102103104105106107

77

168

19

#
 M

U
Se

s
FL

IN
T

MUSes ReMUS

100

101

102

103

104

105

106

107

100101102103104105106107

59

186

19

#
 M

U
Se

s
M

AR
CO

MUSes ReMUS

100

101

102

103

104

105

106

107

100101102103104105106107

133

117

14

#
 M

U
Se

s
M

CS
M

U
S

MUSes ReMUS

100

101

102

103

104

105

106

107

100101102103104105106107

180

57

27

#
 M

U
Se

s
R
eM

U
S

MUSes TOME

100

101

102

103

104

105

106

107

100101102103104105106107

126

116

22

#
 M

U
Se

s
FL

IN
T

MUSes TOME

100

101

102

103

104

105

106

107

100101102103104105106107

131

112

21

#
 M

U
Se

s
M

AR
CO

MUSes TOME

100

101

102

103

104

105

106

107

100101102103104105106107

164

85

15

#
 M

U
Se

s
M

CS
M

U
S

MUSes TOME

100

101

102

103

104

105

106

107

100101102103104105106107

165

83

16

#
 M

U
Se

s
M

CS
M

U
S

MUSes FLINT

100

101

102

103

104

105

106

107

100101102103104105106107

117

116

31

#
 M

U
Se

s
FL

IN
T

MUSes MARCO

100

101

102

103

104

105

106

107

100101102103104105106107

166

84

14

#
 M

U
Se

s
M

CS
M

U
S

MUSes MARCO

Figure 4.3: Scatter plots comparing the number of produced MUSes in the SAT domain.

domain agnostic mus enumeration 67

found either one or no MUS. Furthermore, we provide three numbers
right/above/in the right corner of the plot, that show the number of
points below/above/on the diagonal. For instance, ReMUS found
more/less/equal number of MUSes as FLINT in case of 168/77/19

benchmarks. Finally, we use green and red colors to highlight indi-
vidual orders of magnitude (of 10).

Besides the pair-wise comparison of the algorithms, we also pro-
vide an overall ranking of the algorithms on individual benchmarks.
In particular, assume that for a benchmark B both MCSMUS and
ReMUS found 100 MUSes, MARCO found 80 MUSes, and both TOME

and FLINT found 50 MUSes. In such a case, MCSMUS and ReMUS

share the 1st (best) rank for B, MARCO is 3rd, and TOME and FLINT

share the 4th position. Table 4.1 shows a summary of this ranking.
In particular, for each algorithm, the table shows the average ranking
(avg) of the algorithm w.r.t. all benchmarks, and also the number of
benchmarks where the algorithm ranks as 1st, 2nd, 3rd, 4th, and 5th,
respective.

The best average ranking, 2.23, was achieved by ReMUS, and the
second-best, 2.4, was achieved by MCSMUS. These two algorithms
also dominate in being ranked as 1st; MCSMUS and ReMUS were
the best in the case of 111 and 106 benchmarks, respectively. As for
the remaining three algorithms, they all achieved a ranking between
3.14 and 3.28, i.e., there is no big difference between these three al-
gorithms w.r.t the ranking criterion.

ranked 1st ranked 2nd ranked 3rd ranked 4th ranked 5th average ranking
FLINT 45 59 36 62 62 3.14

MARCO 33 58 50 69 54 3.2
MCSMUS 111 39 42 42 30 2.4
ReMUS 106 59 48 33 18 2.23

TOME 29 47 73 52 63 3.28

Table 4.1: Overall rankings
of evaluated algorithms in the
SAT domain.

To conclude the evaluation in the SAT domain, we state that there
is no algorithm that would actually defeat all the other algorithms
on a vast majority of benchmarks. Although it was usually the case
that either ReMUS or MCSMUS performed the best, there are tens
of benchmarks where one of the other three algorithms dominated.
Clearly, each of the evaluated algorithms is suitable for some kind of
benchmarks. We provide more insight into the dependency on the
type of benchmarks in Section 4.8.

4.7.3 SMT Domain

Benchmarks We conducted the experiments on a collection of 433

benchmarks that were taken from the QF_UF, QF_IDL, QF_RDL,
QF_LIA and QF_LRA divisions of the library SMT-LIB8. This collec- 8 http://www.smt-lib.org/

tion has been, for example, used in the work by Griggio et al. [Cimatti
et al., 2011] and in our recent papers [Bendík et al., 2018b, Bendík and

http://www.smt-lib.org/

68 minimal sets over a monotone predicate: enumeration and counting

100

101

102

103

104

105

106

100 101 102 103 104 105 106

27

104

53

#
 M

U
Se

s
M

AR
CO

MUSes ReMUS

100

101

102

103

104

105

106

100 101 102 103 104 105 106

70

63

51

#
 M

U
Se

s
M

AR
CO

MUSes TOME

100

101

102

103

104

105

106

100 101 102 103 104 105 106

96

32

56

#
 M

U
Se

s
R
eM

U
S

MUSes TOME

Figure 4.4: Scatter plots com-
paring the number of produced
MUSes in the SMT domain.

Černá, 2018]. The benchmarks range in their size from 2 to 32808

constraints. In the case of 249 benchmarks, all the evaluated algo-
rithms identified all the MUSes. In the case of the remaining 184

benchmarks, no algorithm identified all MUSes. Therefore, we focus
here on the 184 benchmarks.

Results Scatter plots comparing pair-wise the evaluated algorithms
on individual benchmarks are provided in Figure 4.4. Similarly as
in the case of the SAT domain, each scatter plot is labeled with three
numbers right/above/in the right corner of the plot that show the
number of points below/above/on the diagonal. The plots are in a
log-scale and points with a zero coordinate are moved to the first
coordinate.

Moreover, in Table 4.2 we provide the overall ranking of the algo-
rithms. ReMUS significantly dominates both its competitors; in the
case of 138 benchmarks, ReMUS performed the best, and only in case
of 13 benchmarks, it performed the worst. TOME and MARCO are
competitive to each other in terms of the ranking criterion as well as
in terms of the scatter plot pair-wise comparison.

ranked 1st ranked 2nd ranked 3rd average ranking
MARCO 75 51 58 1.91

ReMUS 138 33 13 1.32

TOME 77 48 59 1.9
Table 4.2: Overall rankings
of evaluated algorithms in the
SMT domain.

4.7.4 LTL Domain

Benchmarks Although LTL has been widely used, especially in con-
nection with LTL model checking, there are no publicly available
LTL MUS benchmarks. Namely, LTL model checking benchmarks
(e.g., the collection BEEM [Pelánek, 2007]), cannot be used since
these LTL formulas are consistent w.r.t. to each other; their incon-
sistency emerges only after adding a model of a system. Therefore,
we have followed the approach from [Barnat et al., 2016] and gen-
erated custom MUS benchmarks using the tool randltl from the
SPOT library [Duret-Lutz et al., 2016]. To obtain as realistic bench-

domain agnostic mus enumeration 69

102

103

104

102 103 104

9

91

0

#
 M

U
Se

s
M

AR
CO

MUSes ReMUS

102

103

104

102 103 104

1

99

0

#
 M

U
Se

s
M

AR
CO

MUSes TOME

102

103

104

102 103 104

80

20

0

#
 M

U
Se

s
R
eM

U
S

MUSes TOME

Figure 4.5: Scatter plots com-
paring the number of produced
MUSes in the LTL domain.

marks as possible, we reflected the statistics from [Dwyer et al., 1998]
about the most common industrial LTL formulas. We generated 100

benchmarks that use up to 15 atomic propositions (variables) and
range in their size from 145 to 238 formulas. Note that compared to
the benchmarks used in the SAT and SMT domains, the generated
benchmarks are relatively small. This is caused by the complexity
of the satisfiability problem in the LTL domain. Larger benchmarks
would be intractable to deal with.

Results We compare the algorithms via scatter plots in Figure 4.5.
It was the case that all evaluated algorithms on every benchmark
identified at least 100 MUSes and less than 10000 MUSes, therefore
we show only this area in the plots. Moreover, as in the case of SAT
and SMT domains, we show the number of points below/above/on
the diagonal using the numbers right/above/one the diagonal.

ReMUS conclusively outperformed MARCO on almost all of the
instances; there were only 9 benchmarks where MARCO performed
better than ReMUS. As for TOME and MARCO, there is only 1 in-
stance where MARCO performed better than TOME. Finally, ReMUS

beats TOME on a majority of the benchmarks, yet note that there
are several benchmarks where TOME performed significantly better
than ReMUS. As usually, we complement the pair-wise comparison
of the algorithms with Table 4.3 that shows the overall ranking of the
algorithms.

ranked 1st ranked 2nd ranked 3rd average ranking
MARCO 1 8 91 2.9
ReMUS 80 11 9 1.29

TOME 19 81 0 1.81

Table 4.3: Overall rankings of
evaluated algorithms in the LTL
domain.

Finally, let us note that we have already compared the three algo-
rithms before [Bendík and Černá, 2018] using the same set of bench-
marks, and this time, ReMUS performs better than in the previous
evaluation. This is caused by introducing the pre-emptive backtrack-
ing as described in Section 4.4.3.

70 minimal sets over a monotone predicate: enumeration and counting

4.8 Discussion About Results And Recommendations

Since the main purpose of this chapter is to discuss domain agnostic
algorithms, we mainly focus on the comparison of MARCO, TOME,
and ReMUS. All the three algorithms are based on the seed-shrink
scheme and thus, from the high-level view, work quite similarly. Yet,
we have seen that whereas ReMUS performed very well in all the
three constraint domains, the performance of MARCO and TOME

was not so stable across the individual domains. Let us thus discuss
what constraint domains are suitable for the individual algorithms.

MARCO searches for a u-seed among the maximal unexplored
subsets. Since the unsatisfiable subsets are naturally more concen-
trated among the larger subsets, this kind of search usually allows
MARCO to find a u-seed by checking only few unexplored subsets
for satisfiability. However, maximal unexplored subsets are mostly
very large and thus generally hard to shrink. Yet, MARCO performed
quite well in the SAT and SMT domains. The reason is that the
SAT and SMT domains are very specific in the ability of satisfiability
solvers to extract unsat cores of the input formula. In particular, the
extracted cores are often very close (in terms of cardinality) to the
MUSes of the formula. Moreover, the extraction usually comes with
almost no overhead. Consequently, in these domains, the size of a
u-seed for the shrinking procedure is not an important factor, since
the u-seed can be cheaply reduced via its unsat core. What mainly
comes into play is thus the number of satisfiability checks that are
performed in order to find the u-seed, and MARCO is very frugal in
this criterion.

On the contrary, in the LTL domain, unsat core extraction is not
a common feature of the contemporary satisfiability solvers. Also,
shrinking in the LTL domain has not been yet studied so extensively
as in the SAT [Belov and Marques-Silva, 2012, Belov et al., 2014,
Nadel et al., 2014] and the SMT [Guthmann et al., 2016] domains,
and the size of the u-seeds indeed highly affects the complexity of
the shrinking. Consequently, MARCO is not so efficient in this do-
main.

TOME tends to identify small u-seeds for shrinking by searching
unexplored chains with binary search, and it takes only Oplog2 |C|q
satisfiability checks to process an unexplored chain. Based on our
experience, the u-seeds found by TOME are indeed usually notably
smaller than the u-seeds identified by MARCO. That is why TOME

significantly outperforms MARCO in the LTL domain. We recom-
mend using TOME mainly in constraint domains where satisfiability
solvers do not enjoy the ability to extract small unsat cores efficiently.

Also, TOME is the only algorithm in our evaluation that can iden-
tify an MUS via a single check for satisfiability: by checking minimal
unexplored subsets. Recall that minimal unexplored subsets corre-
spond to minimal hitting sets of the already identifies MCSes. More-
over, the larger percentage of MCSes is already identified, the higher
is the chance that a minimal unexplored subset is an MUS. There-

domain agnostic mus enumeration 71

fore, TOME is very efficient in the case of benchmarks that contain
a relatively small number of MCSes. In such benchmarks, TOME

outperforms all the other evaluated algorithms.
ReMUS also tends to identify small u-seeds; however, it uses a dif-

ferent approach then TOME. Based on our experience, ReMUS usu-
ally finds smaller u-seeds than TOME, and it also performs notably
fewer satisfiability checks than TOME to find the u-seeds. Moreover,
it explores the power-set in a way that allows to mine many critical
constraints. ReMUS significantly outperforms TOME and MARCO on
a majority of the benchmarks in all the three constraint domains, and
thus it is the clear winner of our comparison. Moreover, in the SAT
domain, ReMUS outperforms the domain specific algorithm FLINT

and tightly competes with MCSMUS. We recommend ReMUS for a
use in an arbitrary constraint domain.

Part II

MUS and MSS/MCS
Enumeration in the

Boolean CNF Domain

5
Boolean CNF MUS Enumeration

In this chapter, we focus on the instance of MSMPs where the in-
put set C is a set of Boolean clauses (i.e., a Boolean formula in CNF)
and the monotone predicate P is the standard Boolean unsatisfiabil-
ity. Therefore, the minimal subsets of C of interest are called mini-
mal unsatisfiable subsets (MUSes). In particular, this chapter describes
our MUS enumeration algorithm, called UNIMUS [Bendík and Černá,
2020c], that is tailored for this constraint domain and that extensively
exploits specific properties of Boolean clauses.

Minimal unsatisfiable subsets (over Boolean clauses) find applica-
tions in various areas of computer science such as Boolean function
bi-decomposition [Chen and Marques-Silva, 2011], formal equiva-
lence checking [Cohen et al., 2010], circuit error diagnosis [Han and
Lee, 1999], type debugging in Haskell [Stuckey et al., 2003], counter-
example guided abstraction refinement [Andraus et al., 2007], and
many others [Mu, 2019, Arif et al., 2016, Jannach and Schmitz, 2016,
Ivrii et al., 2016, Hunter and Konieczny, 2008].

The reason for identifying MUSes of the input set C of clauses
is usually to somehow analyze the unsatisfiability of C. In some
applications, the goal is to identify just a single MUS. In other appli-
cations, e.g. [Hunter and Konieczny, 2008, Mu, 2019, Andraus et al.,
2007], it is desirable to enumerate several or even all MUSes of C.
The more MUSes are identified, the better insight into the unsatisfi-
ability is provided. However, recall that there can be in general up
to exponentially many MUSes w.r.t. |C| which often makes the com-
plete MUS enumeration practically intractable. Consequently, con-
temporary MUS enumeration algorithms, e.g. [Liffiton et al., 2016,
Bacchus and Katsirelos, 2015, 2016, Narodytska et al., 2018], enumer-
ate MUSes gradually, i.e. one by one, and they attempt to identify as
many MUSes as possible within a given time limit.

Naturally, the problem of MUS identification subsumes checking
subsets of C for satisfiability. Since these checks are quite expen-
sive (NP-complete), the efficiency of an MUS enumeration algorithm
is often tightly connected to the number of satisfiability checks per-
formed to identify each single MUS. Our MUS enumeration algo-
rithm that we present in this section, i.e., UNIMUS, is much more
frugal in the number of performed satisfiability checks than other

76 minimal sets over a monotone predicate: enumeration and counting

contemporary MUS enumeration algorithms, which allows it to enu-
merate MUSes much faster.

The rest of this chapter is organized as follows. Section 5.1 in-
troduces the notation that is specific for this chapter. Subsequently,
Section 5.2 gives a detailed description of our algorithm. Other con-
temporary MUS enumeration solutions are described in Section 5.3.
Finally, Section 5.4 provides experimental evaluation with other con-
temporary Boolean CNF MUS enumeration tools.

5.1 Notation

Throughout this chapter, the input set C is a set of Boolean clauses,
and the monotone predicate P is the standard Boolean unsatisfiabil-
ity. We simply say that a subset N of C is either satisfiable or unsatis-
fiable. Hence, the P1-minimal subsets are minimal unsatisfiable subsets
(MUSes) and the P0-maximal subsets are maximal satisfiable subsets
(MSSes). Critical/conflicting elements for a subset of C are called
critical/conflicting clauses, i.e., a clause c P N is critical for an unsatis-
fiable set N iff Nztcu is satisfiable, and a clause d R M is conflicting
for a satisfiable set M iff MY tdu is unsatisfiable.

To check a subset of C for satisfiability, we employ a SAT solver.
Moreover, given a subset N of C, we assume that the SAT solver
is able to return either an unsat core of N when N is unsatisfiable,
or a model and the corresponding model extension of N when N is
satisfiable1 1 Recall that an unsat core of N is an un-

satisfiable subset of N. Similarly, given
a satisfiable subset N of C and a model
π of N (provided by a SAT solver), the
model extension of N w.r.t. π is the
satisfiable superset E of N defined as
E � tc P C |π |ù cu (Definition 2.4).
Note that based on our empirical expe-
rience, the unsat core (model extension)
is often very close to an MUS (MSS) of
C.

We use the terminology of unexplored subsets of C when talking
about the subsets whose satisfiability has not yet been determined
by our algorithm, and we write Unexplored to denote the set of
all unexplored subsets. Satisfiable unexplored subsets are called s-
seeds, and unsatisfiable unexplored subsets are called u-seeds. The set
Unexplored is maintained via the symbolic representation based on
the formula map� ^map� (described in Section 2.3.2).

5.2 Algorithm

UNIMUS is based on the seed-shrink scheme (as described in Sec-
tion 4.2), i.e., to find each single MUS, UNIMUS first identifies a u-
seed and then shrinks the u-seed into an MUS. It employs a novel
shrinking procedure. Moreover, it employs two novel approaches for
finding u-seeds. One of the approaches is based on the same idea as
contemporary seed-shrink algorithms: to find a u-seed, UNIMUS is
repeatedly picking and checking for satisfiability (via a SAT solver)
an unexplored subset until it identifies a u-seed. The novelty is in the
choice of unexplored subsets to be checked. Briefly, UNIMUS main-
tains a base B and a search-space UnexB � tX |X P Unexplored^ X �

Bu that is induced by the base. UNIMUS searches for u-seeds only
within UnexB. The base B (and thus UnexB) is maintained in a way
that allows identifying u-seeds with performing only a few satisfi-

boolean cnf mus enumeration 77

input : an unsatifiable set C of Boolean clauses
output: all MUSes of C

1 UnexploredÐ PpCq // a global variable

2 B ÐH

3 while Unexplored � H do
4 B Ð refinepBq // Algorithm 5.3

5 UNIMUSCorepBq // Algorithm 5.2

Algorithm 5.1: The Boolean CNF MUS enumeration algorithm UNIMUS.

ability checks. Moreover, the u-seeds are very close to MUSes and
thus relatively easy to shrink.

Our other approach for finding u-seeds is based on a fundamen-
tally different principle. Instead of checking unexplored subsets for
satisfiability via a SAT solver, UNIMUS deduces that some unexplored
subsets are unsatisfiable. The deduction is based on already identi-
fied MUSes and it is very cheap (polynomial).

5.2.1 Main Procedure

UNIMUS (Algorithm 5.1) first initializes Unexplored to PpCq and the
base B to H. Then, it in a while-loop repeats two procedures: refine

that updates the base B, and UNIMUSCore that identifies MUSes in
the search-space UnexB � tX |X P Unexplored^ X � Bu. The algo-
rithm terminates once Unexplored � H.

UNIMUSCore (Algorithm 5.2) works iteratively. Each iteration starts
by picking a maximal element N of UnexB, i.e., N P UnexB such that
N Y tcu R UnexB for every c P BzN. Subsequently, a procedure isSAT

is used to determine, via a SAT solver, the satisfiability of N. More-
over, in dependence of N’s satisfiability, isSAT returns either an un-
sat core K or a model extension E of N. If N is unsatisfiable, the
algorithm shrinks the core K into an MUS Kmus and removes from
Unexplored all subsets and all supersets of Kmus. Subsequently, a
procedure replicate is invoked which attempts to identify additional
MUSes in UnexB.

In the other case, when N is satisfiable, we remove all subsets of
E from Unexplored2. Then, N is used to guide the algorithm into a 2 Note that E might outreach the cur-

rent search-space UnexB and thus prune
search-spaces that will be processed by
future calls of UNIMUSCore.

search-space with more minable critical clauses. In particular, since
N was a maximal unexplored subset of B, then for every c P BzN
the set NY tcu is explored and thus unsatisfiable (Observation 2.15).
Consequently, every clause c P BzN is critical for N Y tcu and espe-
cially for every u-seed contained in NYtcu. Moreover, all these criti-
cal clauses are minable critical as all subsets of N were removed from
Unexplored. If NYtcu � B then c is minable critical for every u-seed
in the current search-space. Otherwise, if |BzN| ¡ 1, we recursively
call UNIMUSCore with a base B1 � N Y tcu for every c P BzN.

The procedures refine, replicate, and shrink are described in Sec-
tions 5.2.2, 5.2.3, and 5.2.4, respectively. All procedures of UNIMUS

follow several rules about Unexplored. First, all operations over

78 minimal sets over a monotone predicate: enumeration and counting

1 while tX |X P Unexplored^ X � Bu � H do
2 N Ð a maximal element of tX |X P Unexplored^ X � Bu // UnexB

3 psat?, E, Kq Ð isSATpNq // K is an unsat core or E is a model extension of N
4 if not sat? then
5 Kmus Ð shrinkpKq // see Section 5.2.4

6 output Kmus

7 UnexploredÐ UnexploredztX |X � Kmus _ X � Kmusu

8 replicatepKmus, Nq // Algorithm 5.4

9 else
10 UnexploredÐ UnexploredztX |X � Eu
11 if |BzN| ¡ 1 then
12 for c P BzN do UNIMUSCorepN Y tcuq

Algorithm 5.2: UNIMUSCorepBq

Unexplored comply with the four rules R1-R4 we defined in Sec-
tion 2.3.1. Second, Unexplored is global, i.e., shared by the proce-
dures. Third, we remove an unsatisfiable set from Unexplored only if
the set is a superset of an explicitly identified MUS. Consequently, no
MUS can be removed from Unexplored without being explicitly iden-
tified. Thus, when Algorithm 5.1 terminates (i.e., Unexplored � H),
it is guaranteed that all MUSes were explicitly identified.

Heuristics According to the above description, UNIMUSCore termi-
nates once all subsets, and especially all MUSes, of B become ex-
plored. However, based on our empirical experience, UNIMUSCore

can get into a situation such that there is a lot of s-seeds in UnexB but
only a few or even no u-seed. Consequently, the MUS enumeration
can get stuck for a while. To prevent such a situation, we track the
number of subsequent iterations of UNIMUSCore in which the set N
was satisfiable. If there are 5 such subsequent iterations, we termi-
nate the current recursive call of UNIMUSCore, i.e., we either back-
track to a parent call of UNIMUSCore or return to the main procedure
(Algorithm 5.1).

5.2.2 The Base and the Search-Space

The base B is modified in two situations. The first situation is the
case of recursive calls of UNIMUSCore which was described in the
previous section. Here, we describe the second situation which is
an execution of the procedure refine before each top-level call of
UNIMUSCore. The goal is to identify a base B such that u-seeds in
UnexB can be easily found and are relatively easy to shrink.

Our approach exploits the union UMUSC of all MUSes of C. As-
sume that we set B to UMUSC. Since every MUS of C is contained
in UMUSC, the induced search-space UnexB would contain all MUSes.
Moreover, compared to the whole C, the cardinality of UMUSC can
be relatively small, and thus the u-seeds in UnexB would be easy to
shrink. Unfortunately, a recent study [Mencía et al., 2019] shows that
computing UMUSC is often practically intractable even for small in-

boolean cnf mus enumeration 79

1 while Unexplored � H do
2 T Ð a maximal element of Unexplored
3 psat?, E, Kq Ð isSATpTq // we use only the unsat core K here (T is unsat. or an MSS)

4 if not sat? then
5 Kmus Ð shrinkpKq // see Section 5.2.4

6 output Kmus

7 UnexploredÐ UnexploredztX |X � Kmus _ X � Kmusu

8 return BY Kmus

9 else UnexploredÐ UnexploredztX |X � Tu
10 return B

Algorithm 5.3: refinepBq

put formulas. Thus, instead of initially computing UMUSC, we use as
the base B just an under-approximation of UMUSC. Initially, we set
B to H (Algorithm 5.1, line 2), and in each call of refine we attempt
to refine (enlarge) the under-approximation. Eventually, B becomes
UMUSC and, thus, eventually, the search-space will contain all so far
unexplored MUSes of C.

The procedure refine (Algorithm 5.3) attempts to enlarge B with an
unexplored MUS. In each iteration, it picks a maximal unexplored
subset T, i.e., T P Unexplored such that T Y tcu R Unexplored for
every c P CzT. Then, T is checked for satisfiability via the procedure
isSAT. If T is unsatisfiable, then isSAT also returns an unsat core
K of T, refine shrinks the core K into an MUS Kmus and based on
Kmus updates the set Unexplored. Subsequently, refine terminates and
returns an updated base B1 � BYKmus. Otherwise, if T is satisfiable,
refine removes all subsets of T from Unexplored and continues with
a next iteration.

There is no guarantee that each call of refine indeed enlarges B.
One possibility is the corner case when all MUSes are already ex-
plored, but there are some s-seeds left. Another possibility is that
the search-space UnexB was not completely explored in the last call
of UNIMUSCore due to the preemptive termination heuristic. Thus,
refine might identify an MUS that is a subset of B. Yet, we have the
guarantee that UNIMUS eventually finds all MUSes since it cannot
terminate before all subsets of C become explored. Also, note that
the procedure refine is very similar to an MUS enumeration algo-
rithm MARCO [Liffiton et al., 2016]. The difference is that refine finds
only a single unexplored MUS whereas MARCO finds them all (see
Section 4.5 for details on MARCO).

5.2.3 MUS Replication

We now describe the procedure replicate(Kmus, N) that based on an
identified MUS Kmus of N attempts to identify additional unexplored
MUSes. The procedure follows the seed-shrink scheme, i.e., to find
an MUS, it first identifies a u-seed and then shrinks it to an MUS.
However, contrary to existing seed-shrink algorithms which identify

80 minimal sets over a monotone predicate: enumeration and counting

1 MÐ tKmusu; rStack Ð xKmusy

2 while rStack is not empty do
3 M Ð rStack.poppq
4 for c P M do
5 if c is minable critical for N then continue
6 S Ð propagatepM, c, N,Mq // Algorithm 5.5

7 if S is null then continue
8 Smus Ð shrinkpSq // see Section 5.2.4

9 output Smus

10 UnexploredÐ UnexploredztX |X � Smus _ X � Smusu

11 MÐMY tSmusu

12 rStack.pushpSmusq

Algorithm 5.4: replicatepKmus, Nq

u-seeds via a SAT solver, replicate identifies u-seeds with a cheap
(polynomial) deduction technique; we call the technique MUS repli-
cation.

Each call of replicate possibly identifies several unexplored MUSes
and all these MUSes are subsets of N. Note that since N is a subset
of the base B in Algorithm 5.2, all MUSes identified by replicate are
contained in the search-space UnexB. Also, note that when replicate

is called, Kmus is the only explored MUS of N (since N was a u-seed
that we shrunk to Kmus). In the following, we will use M to denote
the set of all explored MUSes of N, i.e., initially, M � tKmusu.

Main Procedure The main procedure of replicate, shown in Algo-
rithm 5.4, maintains two data-structures: the set M and a stack
rStack. The computation starts by initializing both M and rStack to
contain the MUS Kmus. The rest of replicate is formed by two nested
loops. In each iteration of the outer loop, replicate pops an MUS M
from the stack. In the nested loop, M is used to identify possibly sev-
eral unexplored MUSes. In particular, for each clause c P M the algo-
rithm attempts to identify a u-seed S such that Mztcu � S � Nztcu.
Observe that if c is minable critical for N then such a u-seed cannot
exist; thus, we skip such clauses. The attempt to find such S is carried
out by a procedure propagate. If propagate fails to find the u-seed, the
inner loop proceeds with a next iteration. Otherwise, the u-seed S
is shrunk into an MUS Smus and the set Unexplored is appropriately
updated. The iteration is concluded by adding Smus to M and also
pushing Smus to rStack, i.e., each identified MUS is used to possibly
identify additional MUSes. The computation terminates once rStack
becomes empty.

Propagate The procedure propagate is based on the well-known con-
cepts of backbone literals and unit propagation [Bollobás et al., 2001,
Kilby et al., 2005]. Given a formula P, a literal l is a backbone literal
of P iff every model of P satisfies tlu. If P is unsatisfiable then every
literal is a backbone literal of P. A backbone of P is a set of backbone
literals of P. If A is a backbone of P then A is also a backbone of

boolean cnf mus enumeration 81

every superset of P. A clause d is a unit clause iff |d| � 1. Note that if
d is a unit clause of P then the literal l P d is a backbone literal of P.

Given a backbone A of P, the backbone propagation can simplify
P and possibly show that P is unsatisfiable. In particular, for ev-
ery l P A and every clause d P P such that l P d, we remove
the literal l from d (since no model of P can satisfy l). If a new
unit clause emerges during the propagation, the backbone literal that
forms the unit clause will be also propagated. If the propagation re-
duces a clause to an empty clause, then the original P is unsatisfiable.

The procedure propagate employs backbone propagation to iden-
tify a u-seed S such that Mztcu � S � Nztcu. Observe that since M
is unsatisfiable and Mztcu is satisfiable, then the set A � t l | l P cu
is a backbone of every such S. Thus, one can pick such S and at-
tempt to show, via propagating A, that S is unsatisfiable. However,
there are too many such S to choose from. Moreover, we need to
guarantee that we find S that is both unsatisfiable and unexplored.
Thus, instead of fixing a particular S and then trying to show its un-
satisfiability, we attempt to gradually build such S. Initially, we set
S to Mztcu and we step-by-step add clauses from Nztcu to S. The
addition of the clauses is driven by a currently known backbone A
of S and also by the set M of explored MUSes to ensure that the
resulting S is a u-seed.

Proposition 5.1. For every unsatisfiable S, S � Nztcu, it holds that
S P Unexplored (i.e., S is a u-seed) if and only if @XPMS � X.

Proof. In UNIMUS, we remove from Unexplored only unsatisfiable
sets that are supersets of explored MUSes and all explored MUSes
of N are stored in M.

Proposition 5.1 shows which clauses can be added to the initial S
while ensuring that if we finally obtain an unsatisfiable S, then the
final S will be unexplored. Note that the initial S � Mztcu trivially
satisfies @XPMMztcu � X since it is satisfiable (M is an MUS). In the
following, we show which clauses should be added to S to eventually
make it unsatisfiable.

Definition 5.1 (operation zz). Let d be a clause and A a set of literals.
The the binary operation d zz A produces the clause d zz A � tl | l P d and
 l R Au.

Definition 5.2 (units, violated). Let S be a set such that Mztcu � S �
Nztcu, and let A be a backbone of S. We define the following sets:

unitspS, Aq � td P Nztcu | @XPMSY tdu � X^ |d zz A| � 1u

violatedpS, Aq � td P Nztcu | @XPMSY tdu � X^ |d zz A| � 0u

Informally, a clause d P Nztcu belongs to unitspS, Aq (violatedpS, Aq)
if the propagation of A would simplify d to a unit clause (empty
clause) and, simultaneously, d P S or d can be added to S in a har-
mony with Proposition 5.1.

82 minimal sets over a monotone predicate: enumeration and counting

1 S Ð Mztcu; A Ð t l | l P cu; H Ð tcu
2 while unitspS, AqzH � H and violatedpS, Aq � H do
3 d Ð choose d P unitspS, AqzH
4 S Ð SY tdu; H Ð H Y tdu; A Ð AY d zz A
5 if violatedpS, Aq � H then return null

6 else
7 d Ð choose d P violatedpS, Aq
8 return SY tdu

Algorithm 5.5: propagatepM, c, N,Mq

Proposition 5.2. For every S such that Mztcu � S � Nztcu, a backbone
A of S, and a clause d P unitspS, Aq, it holds that AY d zz A is a backbone
of SY tdu.

Proof. Assume that d � tl, l0, . . . , lku where t l0, . . . , lku � A and
l � d zz A. Since A is a backbone of S then every model of S satisfies
tt l0u, . . . , t lkuu. Consequently, every model of S Y tdu satisfies
tlu.

Proposition 5.3. For every S such that Mztcu � S � Nztcu, a backbone
A of S, and a clause d P violatedpS, Aq, it holds that SYtdu is unsatisfiable.

Proof. Assume that d � tl0, . . . , lqu. Since d P violatedpS, Aq, then
t l0, . . . , lqu � A. Furthermore, A is a backbone of S, and thus ev-
ery model of S satisfies tt l0u, . . . , t lquu, i.e., no model of S satisfies
d.

The procedure propagate, shown in Algorithm 5.5, maintains three
data structures: the sets S and A, and an auxiliary set H for stor-
ing clauses that were used to enlarge A. Initially, S � Mztcu, A �

t l | l P cu and H � tcu. In each iteration, propagate picks a clause
d P unitspS, AqzH and, based on Proposition 5.2, adds d to S and to
H, and the literal of d zz A to A. The loop terminates once there is
no more backbone literal to propagate (unitspS, AqzH � H), or once
violatedpS, Aq � H. If violatedpS, Aq � H, propagate failed to find a
u-seed. Otherwise, propagate picks a clause d P violatedpS, Aq and
returns the u-seed SY tdu.

Finally, note that backbone propagation is cheap (polynomial) but
it is not a complete technique for deciding satisfiability. Consequently,
it can happen that there is a u-seed S, Mztcu � S � Nztcu, but MUS
replication fails to find it.

5.2.4 Shrink

UNIMUS implements the seed-shrink scheme (Section 4.2), and thus,
the shrinking of a u-seed N is carried out via a black-box single
MUS extraction subroutine. This means that the only output of the
shrinking is an MUS of N; there is no other side effect on the over-
all MUS enumeration. The advantage of the black-box approach is

boolean cnf mus enumeration 83

input : a u-seed N
output: a set crits of clauses that are critical for N

1 crits Ð collect all minable critical clauses for N
2 Q Ð crits
3 while Q � H do
4 c Ð pick c P Q
5 Q Ð Qztcu
6 for l P c do
7 M Ð td P N | l P du
8 if |M| � 1 and MX crits � H then
9 crits Ð critsYM

10 Q Ð QYM
11 return crits

Algorithm 5.6: The critical extension technique.

that we can use any available single MUS extraction tool to imple-
ment the shrinking, and especially, any future advance in a single
MUS extraction can be immediately reflected in the performance of
UNIMUS.

There exist several publicly available single MUS extraction tools
(e.g., [Belov and Marques-Silva, 2012, Belov et al., 2014, Nadel et al.,
2014, Bacchus and Katsirelos, 2015]). Given an unsatisfiable set N,
contemporary extractors also allow the user to provide a set of crit-
ical clauses for N, since prior knowledge of the critical clauses can
significantly speed up the extraction. Thus, before shrinking N, we
attempt to identify a set crits of clauses that are critical for N and
pass them to the single MUS extractor together with N.

As already discussed in the context of domain agnostic MUS enu-
meration algorithms (Chapter 4), we can use the set Unexplored to
collect minable critical clauses for N. In UNIMUS, we indeed collect
all the minable critical clauses. However, we identify more than just
minable critical clauses for N. We introduce a technique that, based
on the minable critical clauses for N, can cheaply deduce that some
other clauses are critical for N. We call the deduction technique crit-
ical extension and it is based on the following observation.

Proposition 5.4. Let N be a u-seed, c P N a critical clause for N, and l P c
a literal of c. Moreover, let M � N be the set of all clauses of N that contain
the literal l. If |M| � 1 then the clause d P M is critical for N, i.e. Nztdu
is satisfiable.

Proof. Assume that Nztdu is unsatisfiable. Since c is critical for N,
then c is critical also for Nztdu. Thus, Nztc, du is satisfiable and
every its model satisfies t lu (as l P c) which contradicts that l is
contained only in d.

The critical extension technique (Algorithm 5.6) takes as an input a
u-seed N and outputs a set crits of clauses that are critical for N. The
algorithm starts by collecting (see Section 2.3.2) all minable critical

84 minimal sets over a monotone predicate: enumeration and counting

clauses for N and stores them to crits and also to an auxiliary set
Q. The rest of the computation works iteratively. In each iteration,
the algorithm picks and removes a clause c from Q and employs
Proposition 5.4 on c. In particular, for each literal l P c, the algorithm
builds the set M � td P N | l P du. If M contains only a single
clause, say d, and d R crits, then d is a new critical clause for N and
thus it is added to crits and to Q. The computation terminates once
Q becomes empty.

Our technique is similar to model rotation [Belov and Marques-
Silva, 2011, Bacchus and Katsirelos, 2015] which identifies additional
critical clauses based on a critical clause c of N and a model of
Nztcu. The difference is that we do not need the model. Another
approach [Wieringa, 2012] that also does not need the model is based
on rotation edges in a flip graph of C.

5.3 Related Work

MUS enumeration was extensively studied in the past decades and
many various algorithms were proposed, e.g., [Hou, 1994, Han and
Lee, 1999, de la Banda et al., 2003, Bailey and Stuckey, 2005, Stern
et al., 2012, Liffiton and Sakallah, 2008, Previti and Marques-Silva,
2013, Liffiton and Malik, 2013, Bendík et al., 2016b, 2018b, Narodyt-
ska et al., 2018, Bacchus and Katsirelos, 2015, 2016]. In the following,
we briefly describe contemporary MUS enumeration approaches.

FLINT [Narodytska et al., 2018] computes MUSes in rounds and
each round consists of two phases: relaxing and strengthening. In the
relaxing phase, the algorithm starts with an unsatisfiable formula U
and weaknesses it by iteratively relaxing its unsat core until it gets
a satisfiable formula S. The intermediate unsat cores are shrunk to
MUSes (via an external single MUS extractor). The resulting satis-
fiable formula S is passed to the second phase, where the formula
is again strengthened to an unsatisfiable formula that is used in the
next round as an input for the relaxing phase.

Another state-of-the-art MUS enumerators are MARCO [Liffiton
et al., 2016] and ReMUS [Bendík et al., 2018b] (as described in Chap-
ter 4). Although these two algorithms are domain agnostic, i.e., not
tailor to the Boolean CNF domain, they are still quite efficient in
this domain. Same as UNIMUS, MARCO and ReMUS are based on
the seed-shrink scheme and thus the major difference between the
algorithms is in the way they identify u-seeds for shrinking. Recall
that MARCO is iteratively picking and checking for satisfiability a
maximal unexplored subset of C, until it finds a u-seed. Since un-
satisfiable subsets of C are naturally more concentrated among the
larger subsets, MARCO usually performs only a few checks to find
the u-seed. However, large u-seeds are generally hard to shrink.
Thus, the efficiency of MARCO crucially depends on the capability
of the SAT solver to provide a reasonably small unsat core of the
u-seed. ReMUS, on contrary to MARCO, tends to identify u-seeds
that are relatively small and thus easy to shrink, by recursively re-

boolean cnf mus enumeration 85

ducing the search-space where it looks for u-seeds. In some sense,
the use of a recursive search-space in ReMUS is similar to the use of
the search-space UnexB in UNIMUS; however, whereas ReMUS grad-
ually reduces the search-space, UNIMUS on the other hand gradually
enlarges the search-space. The biggest difference between ReMUS,
MARCO, and UNIMUS is that UNIMUS is not a domain agnostic algo-
rithm and hence it can directly exploit specific properties of Boolean
clauses. Especially, note that UNIMUS is the first seed-shrink algo-
rithm that is able to identify u-seeds in a polynomial time (via the
MUS replication), i.e., without a SAT solver. MARCO and ReMUS, on
the other hand, are domain agnostic and hence cannot rely on any
domain specific properties.

MCSMUS [Bacchus and Katsirelos, 2016] is an MUS enumeration
algorithm that is tailored for the Boolean CNF domain. Same as
MARCO, MCSMUS searches for u-seeds among maximal unexplored
subsets and shrinks them to MUSes. However, contrary to MARCO,
MCSMUS implements the shrinking via a custom procedure. The
shrinking procedure works in a recursive manner and can possibly
identify multiple MUSes, i.e., multiple MUSes originate from a single
u-seed. Moreover, the shrinking procedure of MCSMUS fully shares
information and works in synergy with the overall MUS enumeration
algorithm. For example, all satisfiable subsets of C that are identi-
fied during the shrinking are remembered by the algorithm and then
used to speed up the subsequent shrinks.

5.4 Experimental Evaluation

We implemented UNIMUS using miniSAT [Eén and Sörensson, 2003]
to maintain the set Unexplored, CaDiCaL [Biere, 2018] as the SAT
solver for checking subsets of C for satisfiability, and a single MUS
extractor subroutine from the MUS enumeration tool MCSMUS [Bac-
chus and Katsirelos, 2016] to implement the shrinking. Our tool is
publicly available at:

https://github.com/jar-ben/unimus

Here, we provide results of an experimental comparison with with
four contemporary MUS enumeration solutions: MARCO [Liffiton
et al., 2016]3, MCSMUS [Bacchus and Katsirelos, 2016]4, FLINT [Nar- 3 MARCO is available at https://sun.

iwu.edu/~mliffito/marco/
4 MCSMUS is available at https://

bitbucket.org/gkatsi/mcsmus/src

odytska et al., 2018]5, and ReMUS [Bendík et al., 2018b]6. As bench-

5 FLINT was kindly provided to us by
its author, Nina Narodytska.
6 ReMUS is implemented in the tool
MUST available at https://github.

com/jar-ben/mustool

marks, we used the collection of 291 CNF formulas from the MUS
track of the SAT 2011 Competition7. This collection is standardly

7 http://www.cril.univ-artois.fr/

SAT11/

used in MUS related papers, including the papers that presented our
four competitors. The formulas range in their size from 70 to 16

million constraints and use from 26 to 4.4 million variables.
All experiments were run using a time limit of 3600 seconds and

computed on an AMD 16-Core Processor and 1 TB memory ma-
chine running Debian Linux. Complete results are available in the
online appendix8. The comparison criteria are the number of iden- 8 https://www.fi.muni.cz/~xbendik/

phdThesis/tified MUSes within the time limit and the performance stability of

https://github.com/jar-ben/unimus
https://sun.iwu.edu/~mliffito/marco/
https://sun.iwu.edu/~mliffito/marco/
https://bitbucket.org/gkatsi/mcsmus/src
https://bitbucket.org/gkatsi/mcsmus/src
https://github.com/jar-ben/mustool
https://github.com/jar-ben/mustool
http://www.cril.univ-artois.fr/SAT11/
http://www.cril.univ-artois.fr/SAT11/
https://www.fi.muni.cz/~xbendik/phdThesis/
https://www.fi.muni.cz/~xbendik/phdThesis/

86 minimal sets over a monotone predicate: enumeration and counting

th
e

pe
rc

en
ta

ge

individual benchmarks

 0
 20
 40
 60
 80

 100

 50 100 150 200

Figure 5.1: Percentage of
MUSes found by MUS replica-
tion.

the algorithms in time. Moreover, we examine in more detail the
manifestation of MUS replication in UNIMUS.

5.4.1 Manifestation of MUS Replication

MUS replication is a crucial part of UNIMUS as, to the best of our
knowledge, it is the first existing technique that identifies u-seeds in
polynomial time. Therefore, we are interested in what is the percent-
age of u-seeds, and thus MUSes, that UNIMUS identifies via the MUS
replication. Figure 5.1 shows this percentage (y-axis) for individual
benchmarks (x-axis); the benchmarks are sorted by the percentage.
We computed the percentage only for the 248 benchmarks where
UNIMUS found at least 5 MUSes. Remarkably, in the case of 161

benchmarks, the percentage is higher than 90 percent, and in the
case of 130 benchmarks, it is higher than 99 percent. Unfortunately,
there are 49 benchmarks where MUS replication found no u-seed at
all. Let us note that 40 of the 49 benchmarks are from the same family
of benchmarks, called “fdmus”. The MUS benchmarks from the SAT
competition consist of multiple families and benchmarks in a family
often have a very similar structure. Most of the families contain only
a few benchmarks, however, there are several larger families and the
“fdmus” family is by far the largest one.

5.4.2 Number of Identified MUSes

We now examine the number of identified MUSes by the evaluated
algorithms on individual benchmarks within the time limit of 3600

seconds. In the case of 28 benchmarks, all the algorithms completed
the enumeration, and thus found the same number of MUSes. There-
fore, we focus here only on the remaining 263 benchmarks.

Figure 5.2 provides scatter plots that pair-wise compare UNIMUS

with its competitors. Each point in the plot shows a result from a
single benchmark. The x-coordinate of a point is given by the al-
gorithm that labels the x-axis and the y-coordinate by the algorithm
that labels the y-axis. The plots are in a log-scale and hence can-
not show points with a zero coordinate, i.e., benchmarks where at
least one algorithm found no MUS. Therefore, we lifted the points
with a zero coordinate to the first coordinate. Moreover, we provide
three numbers right/above/in the right corner of the plot, that show
the number of points below/above/on the diagonal. For example,

boolean cnf mus enumeration 87

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

21

231

11

#
 M

U
Se

s
FL

IN
T

MUSes UNIMUS

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

9

242

12

#
 M

U
Se

s
M

AR
CO

MUSes UNIMUS

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

57

195

11

#
 M

U
Se

s
M

CS
M

U
S

MUSes UNIMUS

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

63

187

13

#
 M

U
Se

s
R
eM

U
S

MUSes UNIMUS

Figure 5.2: Scatter plots com-
paring the number of produced
MUSes.

m
ea

n
of

 r
an

ki
ng

s

time in seconds

ReMUS MARCO FLINT MCSMUS UNIMUS

 1
 1.5

 2
 2.5

 3
 3.5

 4

 0 500 1000 1500 2000 2500 3000 3500

Figure 5.3: 5% truncated mean
of rankings after each 60 sec-
onds.

UNIMUS found more/less/equal number of MUSes than MARCO in
case of 242/9/12 benchmarks. We also use green and red colors to
highlight individual orders of magnitude (of 10).

Besides the pair-wise comparison, we examine also an overall
ranking of the algorithms on individual benchmarks. In particular,
assume that for a benchmark B both UNIMUS and ReMUS found 100

MUSes, MCSMUS found 80 MUSes, and MARCO and FLINT found
50 MUSes. In such a case, UNIMUS and ReMUS share the 1st (best)
rank for B, MCSMUS is 3rd, and MARCO and FLINT share the 4th
position. For each algorithm, we computed an arithmetic mean of
the ranking on all benchmarks. To eliminate the effect of outliers
(benchmarks with an extreme ranking), we computed the 5 percent
truncated arithmetic mean, i.e., for each algorithm we discarded the
5 percent of benchmarks where the algorithm achieved the best and
the worst ranking. Moreover, to capture the performance stability of

88 minimal sets over a monotone predicate: enumeration and counting

the algorithms in time, we computed the mean for each subsequent
60 seconds of the computation. The results are in Figure 5.3.

We conclude that UNIMUS significantly dominates all its competi-
tors. It maintained the best ranking during the whole time period.
Moreover, its ranking was gradually improving towards the final
value of 1.3. The closest, yet still very distant, competitors are ReMUS

and MCSMUS who steadily maintained a ranking around 2.75. FLINT

and MARCO achieved the final raking around 3.7. UNIMUS also dom-
inated in the pair-wise comparison. It found more MUSes than all
its competitors on an overwhelming majority of benchmarks and,
remarkably, the difference was often several orders of magnitude.
We believe that such a significant improvement is achieved both due
to the MUS replication, which allows us to find u-seeds without a
SAT solver, and the restriction to the local search-space UnexB, which
guarantees that the u-seeds are close to MUSes.

Finally, let us note that the performance of all the compared algo-
rithms is also affected by the efficiency of their implementation, and
mainly by the choice the underlying SAT solvers. As we have already
said, UNIMUS uses CaDiCaL to perform the satisfiability checks.
However, as witnessed in Figure 5.1, a UNIMUS found a vast ma-
jority of u-seeds via the MUS replication, i.e., without a SAT solver.
Hence, UNIMUS performs satisfiability checks almost only during
the shrinking, which is implemented by calling a single MUS extrac-
tion subroutine of MCSMUS, i.e., UNIMUS mostly uses the same SAT
solver as MCSMUS. In particular, MCSMUS employs Glucose [Au-
demard and Simon, 2009] as the SAT solver. ReMUS and MARCO

employ miniSAT. To perform the shrinking, ReMUS employs the sin-
gle MUS extraction subroutine of MCSMUS, and MARCO and FLINT

employ a single MUS extractor called muser2 [Belov and Marques-
Silva, 2012]. Finally, we do not know which SAT solver is used by
FLINT since we were provided only a pre-compiled binary of FLINT

by its authors.

6
Boolean CNF MSS and MCS Enumeration

Same as in the previous chapter, here we focus on the instance of
MSMPs where the input set C is a set of Boolean clauses (i.e., a
Boolean formula in CNF) and the monotone predicate P is the stan-
dard Boolean unsatisfiability. The P1-minimal subsets of C are thus
Minimal Unsatisfiable Subsets (MUSes), the P0-maximal subsets of
C are Maximal Satisfiable Subsets (MSSes), and the complements of
MSSes are Minimal Correction Subsets (MCSes). Whereas in the pre-
vious chapter we have focused on MUS enumeration, here our goal
is to enumerate MSS/MCSes of the input formula.

Due to the massive improvements in SAT solving in the past two
decades, Boolean formulas are nowadays widely used in almost all
areas of computer science. Consequently, MSSes (or MCSes), as a
natural concept for analyzing the unsatisfiability of a CNF formula,
found many practical applications in recent years and new appli-
cations are still arising. For instance, MSSes (MCSes) can be used
during the computation of minimal models of CNF formulas and
model-based diagnosis [Ben-Eliyahu and Dechter, 1993], ontology
debugging, and axiom pinpointing [Arif et al., 2015a]. Another ap-
plication of MSSes emerges in the context of the maximum satisfiabil-
ity (MaxSAT) problem. In particular, the MSSes with the maximum
cardinality are the exact solutions of the MaxSAT problem, and the
other MSSes can be at least used as good under-approximations of
the exact MaxSAT solutions [Marques-Silva et al., 2013a]. Yet an-
other application of MSSes (MCSes) emerge in the area of diagnosis;
given an unsatisfiable formula C, the number of MSSes of C serves
as a good diagnosis metric of C’s degree of unsatisfiability [Thimm,
2018]. Finally, due to the minimal hitting set duality between MUSes
and MCSes (Observation 2.6), an existence of an efficient MSS/MCS
enumeration algorithm can pave the way for efficient complete MUS
enumeration [Liffiton and Sakallah, 2008].

Several contemporary MSS enumeration algorithms are based on
a seed-grow scheme, i.e., a dual scheme to the seed-shrink scheme for
MUS enumeration (Section 4.2). That is, to find each single MSS, a
seed-grow algorithm first identifies an s-seed, i.e., a satisfiable subset
among the unexplored subsets. Subsequently, the s-seed is grown
into an MSS. The exact ways of finding and growing the s-seeds dif-
fer for individual seed-grow algorithms. In this chapter, we present

90 minimal sets over a monotone predicate: enumeration and counting

a novel MSS/MCS enumeration algorithm called RIME [Bendík and
Černá, 2020b]. As opposed to existing seed-grow algorithms which
find s-seeds by checking unexplored subsets for satisfiability via a
SAT solver, RIME is often able to find s-seeds using cheap (polyno-
mial) deduction technique. Moreover, RIME uses a novel growing
procedure.

We experimentally compare RIME with three contemporary MSS
(MCS) enumeration approaches on a standard collection of bench-
marks. The results show that RIME significantly outperforms its
competitors on a majority of the benchmarks in the terms of iden-
tified MSSes within a given time limit. Remarkably, RIME needs
to perform much fewer calls to a SAT solver to identify individual
MSSes than its competitors do. On average, RIME performs just 1.13

satisfiability checks per MSS, and in the case of many benchmarks,
the average number of checks per MSS is even smaller than 1. The
average number of performed satisfiability checks per MSS is even
more impressive knowing that the problem of identifying a single
MSS of a given formula C is in FPNPrlogs, i.e., a single MSS can be
found using logarithmically many calls of a SAT solver w.r.t. |C| [Jan-
ota and Marques-Silva, 2016].

This chapter is organized as follows. First, Section 6.1 defines the
notation that is specific for this part of the thesis. Subsequently, Sec-
tion 6.2 provides a detailed description of RIME. Section 6.3 discusses
other existing MSS/MCS enumeration approaches, and finally Sec-
tion 6.4 provides results of our experimental evaluation.

6.1 Notation

We use the same notation as in the previous chapter. In particu-
lar, throughout the whole chapter, C is used to denote the input
set of Boolean clauses. We use the terminology of unexplored subsets
and we write Unexplored to denote the set of all unexplored subsets
of C (unexplored by our algorithm). Moreover, we obey the rules
R1-R4 on manipulation with Unexplored as defined in Section 2.3.1.
Unexplored unsatisfiable subsets are called u-seeds and unexplored
satisfiable subsets are called s-seeds.

We assume that a SAT solver, given a subset N of C, is able to
return either an unsat core K � N of N, or a model π of N which
can be used to build the corresponding model extension E � N of
N defined as E � tc P C |π |ù cu. Recall that the unsat core is
unsatisfiable and the model extension is satisfiable.

Critical/conflicting elements (Definitions 2.8 and 2.9) for a subset
of C are called critical/conflicting clauses. Furthermore, we work
with backbone literals of a set S � C, i.e., literals that have to be sat-
isfied by every model of S. Importantly, we exploit the following
connection between conflicting clauses and backbone literals:

boolean cnf mss and mcs enumeration 91

Proposition 6.1. Let S be a subset of C and c P CzS a conflicting clause
for S, i.e., SYtcu is unsatisfiable. Then the literals t l | l P cu are backbone
literals of every S1, S1 � S.1. 1 Note that we exploited this observa-

tion also during the MUS replication in
Section 5.2.3Proof. By contradiction, assume that c is conflicting for S, however,

a literal l such that l P c is not a backbone literal for S. Therefore,
there is a model π of S that satisfies l, and hence π |ù SY tlu (which
contradicts that c is conflicting for S). The fact that every backbone
literal of S is also a backbone literal of every S1 � S follows from the
fact that every model of such S1 is also a model of S.

6.2 Algorithm

Our MSS enumeration algorithm, called RIME, is based on a scheme
that we call seed-grow scheme: to find each single MSS, we find an
s-seed N and then we grow N into an MSS Nmss of C such that
N � Nmss � C. The seed-grow scheme has been already used
by several MSS enumeration algorithms, e.g., [Bailey and Stuckey,
2005, Stern et al., 2012, Liffiton et al., 2016, Bendík et al., 2016b]. In
general, contemporary seed-grow algorithms identify an s-seed by
iteratively picking and checking an unexplored subset for satisfia-
bility, via a SAT solver, until they find an s-seed. Individual seed-
grow algorithms vary in which and how many unexplored subsets are
checked for satisfiability. Moreover, the algorithms vary in how ex-
actly they grow the s-seeds. We provide more details on contempo-
rary seed-grow algorithms and other MSS enumeration algorithms
in Section 6.3. Naturally, satisfiable subsets of F are more concen-
trated among the smaller subsets, thus, it is easier (requiring fewer
satisfiability checks) to find an s-seed among small unexplored sub-
sets. On the other hand, the closer is an s-seed to an MSS, the easier
is to grow the s-seed; thus it is worth to find a relatively large s-seed.
Individual algorithms choose a different trade-off between the num-
ber of satisfiability checks performed to find the s-seed and the size
of the s-seed.

RIME employs a novel growing procedure. Moreover, RIME al-
ternates two novel techniques for finding s-seeds. One technique
works on the same principle as the contemporary algorithms do:
RIME repeatedly checks unexplored subsets for satisfiability until it
finds an s-seed. The novelty is in the choice of unexplored subsets
to be checked. Briefly, RIME maintains a base IC, IC � C, and a
search-space X defined as X � UnexploredX tN | IC � N � Cu, i.e.
X consists of those unexplored subsets that contain the whole base.
RIME searches for s-seeds in the search-space X . The base is gradu-
ally updated in a way ensuring that s-seeds in the search-space can
be easily found and grown, and that we eventually find all MSSes.

The other technique for finding s-seeds, called MSS rotation, is
fundamentally different: we exploit the already explored MSSes to
deduce that some unexplored subsets are satisfiable (i.e. s-seeds).
The deduction is very cheap (polynomial) and does not involve the

92 minimal sets over a monotone predicate: enumeration and counting

input : an unsatisfiable set C of Boolean clauses
output: all MSSes of C

1 UnexploredÐ PpCqztCu // a global variable

2 IC Ð C
3 while Unexplored � H do
4 IC Ð refinepICq // Algorithm 6.2

5 while UnexploredX tN | IC � N � Cu � H do
6 N Ð a minimal element of UnexploredX tN | IC � N � Cu
7 psat?, E, Kq Ð isSATpNq // K is an unsat core or E is a model extension of N
8 if sat? then
9 Emss Ð growpEq // Algorithm 6.6

10 output Emss

11 UnexploredÐ UnexploredztX |X � Emss _ X � Emssu

12 IC Ð rotatepEmss, ICq // Algorithm 6.3

13 else UnexploredÐ UnexploredztX |X � Ku

Algorithm 6.1: The Boolean CNF MSS enumeration algorithm RIME.

usage of a SAT solver. In the following, we gradually provide a
thorough description of all parts of RIME.

6.2.1 Main Procedure

The main procedure of our RIME is shown in Algorithm 6.1. Initially,
the base IC is set to C and Unexplored is set to PpCqztCu (we assume
that C is unsatisfiable)2. The rest of the algorithm is formed by two 2 Note that in the previous chapters, we

did not require the input set C to be un-
satisfiable. Here, we need it due to tech-
nical reasons. Also, note that based on
the rules R1-R4 on manipulation with
Unexplored (defined in Section 2.3.1),
Unexplored should be initially set to the
whole PpCq. RIME follows the rules
R1-R4. In particular, setting Unexplored

to PpCqztCu can be performed in two
steps: first, we set Unexplored to PpCq
(in accordance to rule R1), and then we
remove C from Unexplored (in accor-
dance to the other rules).

nested while-loops. At the start of each iteration of the outer loop,
the algorithm updates the base IC via a procedure refine. Moreover,
refine can possibly identify some MSSes. Subsequently, in the nested
loop, the algorithm finds all unexplored MSSes in the search-space
X � UnexploredX tN | IC � N � Cu. In particular, each iteration of
the nested loop starts by picking a minimal element N of X where
minimal means that N P X and for all f P N it holds that Nzt f u R X .
Subsequently, N is processed by a procedure isSAT that determines
the satisfiability of N (via a SAT solver) and moreover identifies ei-
ther an unsat core K or a model extension E of N. If N is unsatis-
fiable, the algorithm removes all supersets of the unsat core K from
Unexplored (since they are all unsatisfiable). In the other case, when
N is satisfiable, the algorithm grows the model extension E into an
MSS Emss using a procedure grow. Moreover, the algorithm removes
all subsets and all supersets of Emss from Unexplored, since none of
them can be another MSS. Then, RIME applies on Emss the MSS Ro-
tation technique (denoted by rotate) that tends to identify additional
MSSes. The MSS rotation can also reduce the set Unexplored and
update the base IC. The inner loop terminates once X � H. The
outer loop terminates once Unexplored � H.

Detailed description of how the procedures refine, rotate, and grow

work are provided in Sections 6.2.2, 6.2.3 and 6.2.4, respectively. For
now, let us state some additional properties about the set Unexplored.

boolean cnf mss and mcs enumeration 93

First, Unexplored is a global variable, i.e., it is shared by all proce-
dures of RIME. Second, in all the procedures we remove elements
from Unexplored only in two situations. First, every time RIME iden-
tifies an MSS, it removes the MSS together with all subsets and all
supersets of the MSS from Unexplored. Second, RIME can remove
an unsatisfiable U, U � C, together with all supersets of U from
Unexplored. Thus, no MSS can be removed from Unexplored without
being explicitly identified. Furthermore, RIME follows the rules R1-
R4 for manipulation with Unexplored, hence, by Observation 2.11,
the following observation holds:

Observation 6.1. The outer loop of Algorithm 6.1 terminates iff all MSSes
and all MUSes have been explored (every N � C is a subset or a superset
of an MSS or an MUS of C, respectively).

6.2.2 The Base and the Search-Space

Here we describe how we form and maintain the base IC and thus
the search-space X � UnexploredX tN | IC � N � Cu. Naturally, it
holds that the closer, in terms of cardinality, is an s-seed to an MSS,
the easier it is to grow the s-seed to an MSS. Thus, we tend to keep
in the search-space only s-seeds that are close to MSSes. We exploit
the intersection IMSSC of all MSSes of C. Assume that we set IC to
IMSSC; such a base has a nice property as stated in Proposition 6.2.

Proposition 6.2. Let IC � IMSSC. Then for every MSS M of C such that
M P Unexplored it holds that M P X � UnexploredX tN | IC � N �

Cu.

Proof. Since IMSSC is the intersection of all MSSes of C and IC �

IMSSC, then IC � M.

It is not the case that such X consists only of MSSes; however,
compared to the whole PpCq, X is very dense in the terms of pre-
sented MSSes. Also, s-seeds in X are relatively close, in terms of
cardinality, to MSSes and thus should be easy to grow to MSSes.
Unfortunately, computing IMSSC is often practically intractable in a
reasonable time (see the work [Mencía et al., 2019] on computing
IMSSC). Thus, RIME maintains an over-approximation of IMSSC as the
base IC, i.e. IMSSC � IC � C. Initially, we set IC to C (Algorithm 6.1,
line 2), and in each call of the procedure refine (Algorithm 6.1, line 4),
we reduce IC by removing at least a single clause of ICzIMSSC from
IC. Eventually, IC becomes IMSSC, and thus eventually the search-
space X will contain all so far unexplored MSSes (Proposition 6.2).

We now describe the procedure refine. Let us by Unexploredi and
Ii
C denote the values of Unexplored and IC when Algorithm 6.1 calls

refine. The procedure is based on the following three observations.

Proposition 6.3. Whenever Algorithm 6.1 invokes the procedure refine, it
holds that X � tN | Ii

C � N � Cu X Unexploredi � H.

94 minimal sets over a monotone predicate: enumeration and counting

1 while Unexplored � H do
2 T Ð a maximal unexplored subset of C
3 psat?, E, Kq Ð isSATpTq // the model extension E is not used (T is unsat. or an MSS)

4 if sat? then
5 output T // T is an MSS

6 UnexploredÐ UnexploredztX |X � T_ X � Tu
7 IC Ð I X T
8 IC Ð rotatepT, ICq // Algorithm 6.3

9 else
10 crits Ð collect all minable critical clauses for K
11 Kmus Ð shrinkpK, critsq // external black-box single MUS extractor

12 UnexploredÐ UnexploredztX |X � Kmusu

13 IC Ð ICzKmus

14 break
15 return IC

Algorithm 6.2: refinepICq

Proof. At the first iteration of the outer loop, Unexploredi � PpCqztCu
and Ii

C � C, thus X � H. In other iterations, the claim follows from
the condition of the inner loop.

Proposition 6.4. Let M be an MSS of C such that M P Unexploredi.
Then IMSSC � Ii

C XM � Ii
C.

Proof. From the pre-condition X � H (Proposition 6.3), we have
Ii
CzM � H, thus Ii

C XM � Ii
C. Furthermore, since both Ii

C and M are
supersets of IMSSC, we have IMSSC � Ii

C XM.

Proposition 6.5. Let M be an MUS of C such that M P Unexploredi.
Then IMSSC � Ii

CzM � Ii
C.

Proof. From the minimal hitting set duality between MUSes and MC-
Ses, we know that for each f P M, there has to exist an MCS L such
that f P L and its complementing MSS L such that f R L. Thus, we
have that IMSSC � Ii

CzM. Furthermore, since M P Unexploredi and
from the pre-condition X � H (Proposition 6.3), we have Ii

CzM � H,
thus Ii

CzM � Ii
C.

In other words, every unexplored MSS and every unexplored MUS
allow us to reduce IC. Moreover, from Observation 6.1, we know that
there is at least one unexplored MSS or MUS when refine is invoked.
The procedure refine is shown in Algorithm 6.2. To reduce IC, the al-
gorithm attempts to identify at least one unexplored MUS and possi-
bly several unexplored MSSes. Each iteration of the algorithm starts
by picking a maximal unexplored subset, i.e. a set T P Unexplored

such that for each f P CzT it holds that TY t f u R Unexplored. Then,
T is checked for satisfiability via the procedure isSAT. If T is unsatis-
fiable, isSAT returns an unsat core K of T. Subsequently, a procedure
shrink is used to find an MUS Kmus of K. Then, Unexplored is re-
duced by removing all supersets of Kmus from it, and IC is reduced

boolean cnf mss and mcs enumeration 95

1 rotationQueue Ð xNy
2 while rotationQueue is not empty do
3 M Ð rotationQueue.dequeuepq
4 for f P CzM do
5 for l P f do
6 S Ð pMY t f uqztg P M | l P gu
7 if |MzS| ¡ threshold then continue
8 if S P Unexplored then
9 Smss Ð growpSq // Algorithm 6.6

10 output Smss

11 UnexploredÐ UnexploredztX |X � Smss _ X � Smssu

12 IC Ð IC X Smss

13 rotationQueue.enqueuepSmssq

14 return IC

Algorithm 6.3: rotatepN, ICq

to ICzKmus. In the other case, when T is satisfiable, it is guaran-
teed that T is an MSS of C (Observation 2.12). The algorithm re-
duces IC to IC X T, and removes all subsets and all supersets of T
from Unexplored. Subsequently, T is processed by the procedure
rotate that can identify additional MSSes and further reduce IC and
Unexplored. The algorithm terminates either when a first MUS is
found or when Unexplored � H.

The procedure shrink that finds an MUS of K can be implemented
via any single MUS extraction algorithm, e.g., [Bacchus and Katsire-
los, 2015, Belov and Marques-Silva, 2012, Belov et al., 2014, Nadel
et al., 2014]. To speed up the extraction, we provide the extraction
algorithm with the set crits of clauses that are minable critical for
K3. Since clauses that are critical for K has to be contained in every 3 Note that we can possibly apply also

the critical extension technique we pre-
sented in Section 5.2.4 (Algorithm 5.6)
to identify additional critical clauses be-
fore the shrinking. We have not yet inte-
grated the critical extension in our im-
plementation of RIME, but we plan to
do it.

MUS of K, prior knowledge of such clauses is very beneficial [Liffiton
et al., 2016, Bendík et al., 2018b].

Finally, let us explain why we allow Algorithm 6.2 to identify mul-
tiple MSSes even though finding just a single MSS would be enough
to reduce IC. The reason is that all these MSSes are identified very
cheaply; we perform just a single satisfiability check per each MSS.

6.2.3 MSS Rotation

Here we describe our MSS Rotation technique that, based on an MSS
N of C, attempts to identify additional unexplored MSSes. Moreover,
it attempts to reduce the sets Unexplored and IC. From the high-level
view, MSS rotation follows the seed-grow scheme, i.e. it identifies s-
seeds and grows them to MSSes. The uniqueness of MSS rotation
lies in the way it finds the s-seeds. Instead of first finding an unex-
plored subset and then checking the unexplored subset for satisfia-
bility, MSS rotation first finds a satisfiable subset and then checks the
subset for being unexplored. Such an approach has two significant
advantages. First, it is much easier to check a subset for being unex-

96 minimal sets over a monotone predicate: enumeration and counting

plored than to find an unexplored subset (see Section 2.3.2). Second,
MSS rotation finds the satisfiable subset via a cheap deduction tech-
nique instead of employing a SAT solver. The key deduction idea is
summarized in Proposition 6.6.

Proposition 6.6. Let M be an MSS of C, f a clause such that f P CzM,
and l a literal of f . Then, the set S � pM Y t f uqztg P M | l P gu is
satisfiable.

Proof. Let π be a model of M and πl a truth assignment that orig-
inates from π by flipping the assignment to the variable of l. Since
π satisfies the whole M, then πl satisfies at least those clauses of M
that does not contain l. Moreover, since l P f then πl satisfies also
f .

The MSS rotation technique is shown in Algorithm 6.3. The algo-
rithm maintains a queue rotationQueue of MSSes. Initially, the queue
contains the input MSS N. In each iteration, the algorithm dequeues
an MSS M from the queue and uses it to find new MSSes. In par-
ticular, for each f P CzM and each l P f , the algorithm constructs
a satisfiable set S based on Proposition 6.6 and checks if S is unex-
plored. If S is unexplored, then S is grown to an MSS Smss and the
MSS is used to reduce the sets Unexplored and IC. Moreover, Smss

is added to the queue and thus eventually used to possibly identify
additional MSSes.

We employ one additional heuristic in the algorithm: instead of
checking every S for being an s-seed, we skip every S such that
|MzS| ¡ threshold where threshold ¥ 1 (line 7 in the algorithm). There
are two motivations for this heuristic. First, the smaller S is, the
more-likely S is a subset of some already explored MSS, i.e. the
more-likely is S explored. Second, it is generally easier to grow larger
s-seeds than smaller s-seeds, thus we tend to find larger s-seeds. The
most suitable value of threshold varies for different kinds of bench-
marks; thus the value of threshold can be specified by the user of our
algorithm. In our evaluation (Section 6.4), we made an ad-hoc choice
and set threshold to 10 for all benchmarks.

6.2.4 Grow

In this section, we describe the procedure grow that takes as an input
an s-seed N and returns an unexplored MSS Nmss of C such that
N � Nmss. The procedure is based on a simple, well-known, single
MSS extraction algorithm. We first describe the base solution and
then introduce several novel improvements to the base solution.

Base Solution Recall that a set N is an MSS of C if every f P CzN
is conflicting for N. Also, recall that if a clause f is conflicting for
N, than the literals t l | l P f u are backbone literals for N. The base
solution is shown in Algorithm 6.4. It maintains two sets: the in-
put set N and a set confs of clauses that are known to be conflicting
for N. Initially, confs � H. In each iteration, the algorithm picks a

boolean cnf mss and mcs enumeration 97

input : an unsatisfiable set C of Boolean clauses
input : a satisfiable subset N of C
output: an MSS Nmss of C such that N � Nmss

1 confs ÐH

2 while CzpN Y confsq � H do
3 f Ð pick a clause from CzpN Y confsq
4 psat?, Eq Ð isSATpN Y t f u,

�
fPconfst l | l P f uq

5 if sat? then N Ð E
6 else confs Ð confsY t f u
7 return N

Algorithm 6.4: A simple MSS extraction algorithm.

1 while True do
2 E Ð conflictExtensionpN, confsq // based on Definition 6.1

3 if E � N then return pN, confsq
4 N Ð E
5 confs1 Ð collect all minable conflicting clauses for N
6 if confs � confs1 then return pN, confsq
7 confs Ð confs1

Algorithm 6.5: enlargepN, confsq

clause f P CzpNY confsq and checks if f is conflicting for N by check-
ing N Y t f u for satisfiability via a SAT solver, denoted by isSAT. To
speed up the satisfiability query, isSAT takes as an input also the
set
�

fPconfst l | l P f u of backbone literals that can be obtained from
confs (prior knowledge of backbone literals can be very beneficial for
a SAT solver). If NYt f u is satisfiable, then isSAT returns a model ex-
tension E of NY t f u and N is enlarged to E. In the other case, when
N Y t f u is unsatisfiable, the clause f is added to confs. The com-
putation terminates once CzpN Y confsq � H. The invariant of the
algorithm is that N is satisfiable and all clauses in confs are conflict-
ing for N. The algorithm performs up to |CzN| satisfiability checks
(due to the use of model extensions, the number can be lower).4 4 Note that Algorithm 6.4 can be seen as

a domain specific variant of the domain
agnostic growing algorithms we pre-
sented in Section 2.3.3 (Algorithm 2.2).
The difference between Algorithm 6.4
and Algorithm 2.2 is the use of the
model extension and the backbone lit-
erals to save and speed-up satisfiability
checks, respectively.

Algorithm 6.4 forms a basis of several contemporary single MSS
extraction algorithms (see [Marques-Silva et al., 2013a]). These algo-
rithms extensively exploit domain specific properties of the Boolean
CNF domain and are very efficient. Thus, instead of developing a
custom MSS extractor, we might use as a black-box subroutine one
of the existing solutions. However, the single extractors are tailored
for finding only a single MSS and consequently do not (and can-
not) fully exploit information that we can obtain from the overall
MSS enumeration algorithm. Therefore, we propose our custom sin-
gle MSS extraction algorithm that works in synergy with the overall
MSS enumeration.

Key Observations Our approach is based mainly on two observa-
tions. First, we can use Unexplored to collect minable conflicting

98 minimal sets over a monotone predicate: enumeration and counting

clauses for an s-seed N. The second observation concerns a concept
of conflict extension that we define as follows.

Definition 6.1 (conflict extension). Let N be an s-seed, confs a set of con-
flicting clauses for N, and backs �

�
fPconfst l | l P f u the set of all back-

bone literals for N that can be obtained from confs. The conflict extension
of N w.r.t. C and confs is the set E � NYtg P CzN | backsXLitspgq � Hu
where Litspgq are literals of the clause g.

Proposition 6.7. Let N be an s-seed, confs a set of conflicting clauses for
N, and E the conflict extension of N w.r.t. C and confs. Then E is an s-seed
such that N � E.

Proof. Every model of N has to satisfy all the backbone literals backs
and consequently also every clause g P C that contains at least one
of the backbone literals, thus E is satisfiable. Since N is an s-seed,
E � N is an s-seed (Observation 2.9).

The ability to mine conflicting clauses and the concept of conflict
extension can be very powerful if we combine them. In particular,
assume that we are given an s-seed N and the set confs of clauses
that are minable conflicting for N. We can use the conflict exten-
sion to enlarge N based on confs. In turn, there might arise addi-
tional minable conflicting clauses for N, and so on until a fix-point
is reached. We properly describe this functionality in the procedure
enlarge shown in Algorithm 6.5. The input of the algorithm is an s-
seed Ni and a set confsi of conflicting clauses for Ni. The output of
the procedure are sets No, confso such that No is an s-seed, confso is
a set of conflicting clauses for No, No � Ni, and confso � confsi. The
algorithm works iteratively. In each iteration the algorithm computes
the conflict extension E of N based on confs, and then enlarges N to
E. Subsequently, the the set confs1 of minable conflicting clauses for
(the enlarged) N is computed, and confs is enlarged to confs1. The
algorithm terminates either once the model extension does not en-
large N anymore or once we are not able to collect any new minable
conflicting clauses.

Algorithm Our growing procedure is shown in Algorithm 6.6. It
takes as an input an s-seed N, and it returns an unexplored MSS
Nmss of C such that N � Nmss.

The computation starts by collecting the set confs of clauses that
are minable conflicting for N. Subsequently, the procedure enlarge

(Algorithm 6.5) is used to enlarge both confs and N. The main part
of the algorithm is formed by a while loop. In each iteration, the al-
gorithm picks a clause f P CzpN Y confsq and checks N Y t f u for sat-
isfiability via the procedure isSAT. To make the check more efficient,
we pass to isSAT the set

�
fPconfst l | l P f u of backbone literals that

can be obtained from confs. If N Y t f u is satisfiable, then we obtain
its model extension E and enlarge N to E. Consequently, there might
emerge additional minable conflicting clauses for N, thus we re-
collect them and add them to confs. In the other case, when N Y t f u
is unsatisfiable, we obtain an unsat core K of N Y t f u from the SAT

boolean cnf mss and mcs enumeration 99

1 confs Ð collect all minable conflicting clauses for N
2 N, confs Ð enlargepN, confsq // Algorithm 6.5

3 while CzpN Y confsq � H do
4 f Ð pick a clause from CzpN Y confsq
5 psat?, E, Kq Ð isSATpN Y t f u,

�
fPconfst l | l P f uq

6 if sat? then
7 N Ð E
8 confs1 Ð collect all minable conflicting clauses for N
9 confs Ð confsY confs1

10 else
11 confs Ð confsY t f u
12 UnexploredÐ UnexploredztX |X � Ku
13 N, confs Ð enlargepN, confsq // Algorithm 6.5

14 return N

Algorithm 6.6: growpNq

solver and we remove all supersets of K from Unexplored. Also, we
add f to confs since f is conflicting for N. At the end of the iteration,
we use the procedure enlarge to possibly further enlarge N and confs.

Same as in the case of the base solution (Algorithm 6.4), the invari-
ant of the algorithm is that N is an s-seed, confs is a set of conflicting
clauses for N, and confsX N � H. The algorithm terminates once
confsY N � C, thus the final N is an unexplored MSS of C. In the
worst case, the algorithm performs |CzN| satisfiability checks, i.e.,
there is no asymptotic improvement over the base solution. Yet, we
have experimentally observed that the algorithm usually performs
much fewer satisfiability checks and in many cases even no checks at
all (see Section 6.4). This is mainly due to two reasons. First, RIME

grows s-seeds that are usually very close to the resultant MSSes. Sec-
ond, the procedure enlarge can often significantly enlarge both N and
confs.

Finally, let us note that in the procedure grow, we remove from
Unexplored only unsatisfiable sets (supersets of the unsat cores K)
even though we identify also some satisfiable sets (subsets of the
model extensions E). The thing is that all the model extensions E are
subsets of the resultant MSS Nmss. We use grow in Algorithms 6.1 and
6.3 and in both cases, we remove all subsets of Nmss from Unexplored

immediately after grow terminates.

6.3 Related Work

Whenever an MSS enumeration algorithm searches for an MSS N, it
needs to deal with two tasks: (1) it has to guarantee that N is indeed
an MSS, and (2) it has to guarantee that N is so far unexplored MSS.
Based on these tasks, we can divide existing algorithms into two
categories.

100 minimal sets over a monotone predicate: enumeration and counting

Algorithms from one category deal with the two tasks separately
and are based on the seed-grow scheme. The algorithms start by
finding an s-seed, i.e. with the task (1), and then they grow the s-
seed into an MSS, i.e. perform the task (2). Perhaps the most famous
algorithms from this category are MARCO, DAA [Bailey and Stuckey,
2005] and PDDS [Stern et al., 2012] that we already described be-
fore in Section 4.5 in the context of MUS enumeration. In partic-
ular, MARCO biased for an MSS enumeration searches for s-seeds
by repeatedly picking and checking for satisfiability a minimal un-
explored subset until it finds a satisfiable one, i.e., an s-seed. Since
satisfiable subsets of C are naturally more concentrated among the
smaller subsets, MARCO often needs only a few satisfiability checks
to find the s-seed. However, the s-seeds are relatively small and thus
potentially hard to grow. It is true that MARCO employs the model
extension technique to enlarge the s-seed before the growing, how-
ever, there is no guarantee of how close the extension will be to an
MSS. The growing itself is carried out via a black-box subroutine and
can be implemented using any available single MSS extractor. As for
PDDS, recall that the algorithm works in the same way as MARCO,
i.e., it finds an s-seed by repeatedly checking a minimal unexplored
subset for satisfiability until it identifies an s-seed. The main dif-
ference between the two algorithms is that PDDS does not exactly
specify how to identify the minimal unexplored subsets, whereas
authors of MARCO proposed to use the efficient technique based on
the formula map� ^map�. Consequently, MARCO is the one of the
two that is nowadays used. As for DAA, recall that the algorithm can
easily suffer from memory issues due to computing large number of
minimal hitting sets simultaneously, and thus it is often practically
unusable. Another algorithm from this group is our TOME which
was presented in Section 4.3. However, TOME is a domain agnostic
algorithm and based on our experience, it is not very efficient in the
Boolean CNF domain.

Algorithms from the other group deal with the tasks (1) and (2)
simultaneously. Similarly as MARCO and RIME, the algorithms use
a variation of the formula map� ^map� to carry information about
unexplored subsets. However, instead of using the formula sepa-
rately, they combine map� ^map� with the formula C into a single
Boolean formula G. Consequently, the task of checking whether a
subset N of C is both satisfiable and unexplored, i.e. an s-seed, can
be done via a single SAT solver query on G. To find each single MSS,
the algorithms perform several such queries, and every time a new
MSS is found, the formula G is modified to exclude the MSS from the
further computation. To the best of our knowledge, the current state-
of-the-art MSS enumerators from this category are MCSLS [Marques-
Silva et al., 2013a], FLINT [Narodytska et al., 2018], and an approach
from [Grégoire et al., 2018].

Finally, there have been proposed several single MSS extraction
algorithms, e.g., [Felfernig et al., 2012, Bacchus et al., 2014, Grégoire
et al., 2014, Mencía et al., 2015], that can be often used as a subrou-

boolean cnf mss and mcs enumeration 101

th
e

pe
rc

en
ta

ge

individual benchmarks

 0
 20
 40
 60
 80

 100

 50 100 150 200 250 300

Figure 6.1: Percentage of MSSes
found by MSS rotation.

tine of MSS enumeration algorithms, and several techniques [Previti
et al., 2017, 2018] for caching results of SAT queries that naturally
emerge during single or multiple MSS extraction.

6.4 Experimental Evaluation

We implemented RIME in C++ using CaDiCaL [Biere, 2018] as a SAT
solver and a single MUS extractor muser2 [Belov and Marques-Silva,
2012] to perform the shrinking in Algorithm 6.2. Our tool is publicly
available at:

https://github.com/jar-ben/rime

In this section, we experimentally compare RIME with three con-
temporary MSS enumeration tools: MARCO5 [Liffiton et al., 2016], 5 https://sun.iwu.edu/~mliffito/

marco/MCSLS6 [Marques-Silva et al., 2013a], and FLINT7 [Narodytska et al.,
6 The tool was kindly provided to us by
its authors.
7 The tool was kindly provided to us by
its authors.

2018]. In case of MARCO and FLINT, the algorithms enumerate both
MUSes and MSSes and can be biased either towards MUS or MSS
enumeration; we used the bias for MSS enumeration.

We focus on three criteria in the comparison: (1) the number of
identified MSSes within a given time limit, (2) the median time to
identify individual MSSes, and (3) the median number of performed
satisfiability checks to identify individual MSSes. Moreover, we ex-
amine the manifestation of MSS rotation in RIME.

As benchmarks, we use the collection of 291 CNF formulae that
were used in the MUS track of the SAT Competition 2011

8 (i.e., the 8 http://www.satcompetition.org/

same benchmarks as we used in the previous two Chapters). The
benchmarks range in their size from 70 to 16 million clauses and use
from 26 to 4.4 million variables. All experiments were run using a
time limit of 3600 seconds and computed on an AMD EPYC 7371

16-Core Processor, 1 TB memory machine running Debian Linux
4.19.67-2. The value of threshold in Algorithm 6.3 was set to 10. Com-
plete results are available in the online appendix9. 9 https://www.fi.muni.cz/~xbendik/

phdThesis/

6.4.1 Manifestation of MSS Rotation

To the best of our knowledge, MSS rotation is the very first tech-
nique that is able to identify s-seeds for the growing in polynomial
time (i.e., without a SAT solver). To examine the manifestation of
MSS rotation in RIME, we measured the percentage of s-seeds, and
consequently MSSes, that RIME identified via the rotation technique.

https://github.com/jar-ben/rime
https://sun.iwu.edu/~mliffito/marco/
https://sun.iwu.edu/~mliffito/marco/
http://www.satcompetition.org/
https://www.fi.muni.cz/~xbendik/phdThesis/
https://www.fi.muni.cz/~xbendik/phdThesis/

102 minimal sets over a monotone predicate: enumeration and counting

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

100

149

15

#
 M

U
Se

s
FL

IN
T

MUSes RIME

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

37

217

10

#
 M

U
Se

s
M

AR
CO

MUSes RIME

100

101

102

103

104

105

106

107

100 101 102 103 104 105 106 107

68

185

11

#
 M

U
Se

s
M

CS
LS

MUSes RIME

Figure 6.2: Scatter plots com-
paring the number of identified
MSSes within first 3600 sec-
onds.

In Figure 6.1, we show this percentage (y-axis) for individual bench-
marks (x-axis); the benchmarks are sorted by the percentage. We
computed the percentage only for the 273 benchmarks where RIME

identified at least 5 MSSes.
You can see that the MSS rotation technique identified at least one

s-seed on every benchmark. Remarkable, in the case of 203 bench-
marks, the percentage is higher than 90 percent, and in the case of 155

benchmarks, the percentage is even higher than 99 percent. Hence,
we conclude that MSS rotation is a crucial part of RIME.

6.4.2 Number of Identified MSSes

Due to possibly exponentially many MSSes in a benchmark, the com-
plete MSS enumeration is generally intractable. Only in the case of
27 benchmarks, all the evaluated algorithms identified within the
time limit all MSSes. Hence, in this section, only the remaining 264

benchmarks are the subject of our evaluation.
Figure 4.3 provides 3 scatter plots that pairwise compare RIME

with its competitors on individual benchmarks. Each point in the
plot shows the number of identified MSSes within the 3600 seconds
by the two compared algorithms on one particular benchmark; one
algorithm determines the position on the vertical axis and the other
one the position on the horizontal axis. Moreover, we provide three
numbers above/right/in the right corner of each plot that show the
number of points above/below/on the diagonal. We also use a red
and green background color to highlight different orders of magni-
tude (of 10). Note that the plots are in a log-scale and hence cannot
show points with a zero coordinate. Therefore, we lifted the points
with a zero coordinate to the 1st coordinate, i.e. the points that are
exactly on the x-axis or on the y-axis show benchmarks where one of
the algorithms found either only a single MSS or no MSS at all.

Besides the pair-wise comparison of the algorithms, we also pro-
vide the overall ranking of the algorithms on individual benchmarks
(same as we did in the previous chapter). In particular, assume that
for a benchmark B both RIME and FLINT found 100 MSSes, MCSLS

found 80 MSSes, and MARCO found 50 MSSes. In such a case, RIME

boolean cnf mss and mcs enumeration 103

m
ea

n
of

 r
an

ki
ng

s

time in seconds

RIME MARCO FLINT MCSLS

 1

 1.5

 2

 2.5

 3

 3.5

 0 500 1000 1500 2000 2500 3000 3500

Figure 6.3: 5% truncated mean
of rankings after each 60 sec-
onds.

and FLINT share the 1st (best) rank for B , FLINT is 3rd, and MARCO

is on the 4th position. For each of the algorithms, we computed the 5

percent truncated arithmetic mean of the rankings on all benchmarks
(i.e., for each algorithm, we discarded the 5 percent of benchmarks
where the algorithm achieved the best and the worst ranking). To
capture the change of the performance of the algorithms in time, we
computed the truncated mean of the rankings after each subsequent
60 seconds of the computation. The results are shown in Figure 6.3.

We conclude that RIME conclusively dominated all of its competi-
tors. Based on the scatter plots, the tightest competitor of RIME is
FLINT which was able to outperform RIME on 100 benchmarks, but
it lost to RIME on 149 benchmarks. RIME also steadily maintained
the best (truncated mean) ranking with the value around 1.56 dur-
ing the whole time period. The second-best ranking was achieved
by MCSLS which steadily maintained a ranking around 2.1. FLINT

maintained during the first 2000 seconds a ranking around 2.4 and
then it gradually improved its ranking towards the final value 2.3.
Finally, MARCO maintained the worst ranking with the final value
3.1

The fact that MCSLS ranks on average better than FLINT can be
surprising considering the pair-wise scatter plot comparison where
FLINT performed better against RIME than MCSLS. Based on our
closer examination of the experimental results, it is the case that
FLINT performs very well on many benchmarks (i.e., ranks the best),
however, there are also many benchmarks where FLINT performs
poorly (i.e. ranks the worst or the second-worst). On the other hand,
MCSLS achieved the worst ranking only on a few benchmarks.

6.4.3 Time and Checks per MSS

Here, we examine the number of elapsed seconds and the number
of performed satisfiability checks to identify each subsequent MSS.
These numbers naturally differ for individual benchmarks, thus we
focus on median values. The plot in Figure 6.4 shows the median
number of elapsed seconds required to identify the first 5000 MSSes.
A point with coordinates px, yq states that the median of elapsed
seconds to output the first x MSSes is y. We used only 91 bench-
marks to compute the medians since only in those benchmarks all
the algorithms found at least 5000 MSSes. The figure shows that all
the algorithms, except FLINT, produce individual MSSes at a rela-

104 minimal sets over a monotone predicate: enumeration and counting

 0
 50

 100
 150
 200
 250
 300
 350
 400
 450

0 1000 2000 3000 4000 5000nu
m

be
r

of
 e

la
ps

ed
 s

ec
on

ds

number of identified MSSes

RIME
MARCO

FLINT
MCSLS

Figure 6.4: Median number of
elapsed seconds per MSS to
output the first 5000 MSSes.

 0

 5000

 10000

 15000

 20000

 25000

 30000

0 1000 2000 3000 4000 5000

nu
m

be
r

pe
rf

or
m

ed
 s

at
.
ch

ec
ks

number of identified MSSes

RIME
MARCO
MCSLS

Figure 6.5: Median number of
performed satisfiability checks
per MSS to output the first 5000

MSSes.

tively steady rate. FLINT was rather slow in identifying the first 1500

MSSes, however, then it speeded up. The median amount of elapsed
time to find the 5000th MSS by RIME, MCSLS, FLINT, and MARCO

was 60, 178, 300, and 412 seconds, respectively.
MSS enumeration naturally subsumes checking subsets of the in-

put Boolean formula for satisfiability. Based on our experience, per-
forming these checks is the most expensive part of an MSS enumera-
tion algorithm. In Figure 6.5, we show the median number of satisfi-
ability checks performed to identify the first 5000 MSSes (computed
from the 91 benchmarks). Unfortunately, we were unable to measure
the number of checks for FLINT since its authors provided us only
with a binary version of the tool that does not provide this infor-
mation. We can see that the median number of performed checks
to output the 5000th MSS by RIME, MCSLS, and MARCO was 5656,
24002, and 29432, respectively. Thus, to find each single MSS, RIME,
MCSLS, and MARCO performed on average around 1.13, 4.8, and 5.9
satisfiability checks.

Remarkably, in the case of 55 out of all 291 benchmarks, RIME

performed fewer satisfiability checks than what was the number of
identified MSSes. This was achieved mainly due to our novel tech-
niques of MSS rotation, which allowed us to find s-seeds without a
SAT solver, and conflict extension which often allowed us to grow an
s-seed without performing even a single satisfiability check.

We conclude that it is the frugality of RIME w.r.t. the number
of performed satisfiability checks what allowed it to so substantially
outperform all of its competitors. RIME found significantly more
MSSes than its competitors on a majority of benchmarks; the differ-

boolean cnf mss and mcs enumeration 105

ence was often several orders of magnitude. Moreover, in terms of
the median values, RIME is three times faster than its closest com-
petitor MCSLS, five times faster than FLINT, and seven times faster
than MARCO.

Part III

MUS and MSS/MCS
Counting in the Boolean

CNF Domain

7
Boolean CNF MUS Counting

Same as in the previous two chapters, here our goal is to analyze a
set C of Boolean clauses and the P1-minimal and P0-maximal subsets
are the minimal unsatisfiable and maximal satisfiable subsets of C,
respectively. However, instead of MUS or MSS/MCS enumeration as
we did in the previous two chapters, here we present an algorithm
for counting the number of MUSes of C, called AMUSIC [Bendík and
Meel, 2020].

Although the research on MUSes has been pioneered already in
1987 by Reiter [Reiter, 1987], the early techniques for MUS identi-
fication were quite inefficient. Consequently, the first applications
of MUSes primarily required identification of just a single MUS of
the input formula. With an improvement of the scalability of MUS
enumeration techniques about a decade and a half ago [Bailey and
Stuckey, 2005], new applications that require identification of mul-
tiple or even all MUSes arised. In the past few years, MUS identi-
fication/enumeration approaches improved even more, and thus re-
searchers now have sought to investigate other extensions of MUSes
and their applications. One such application is MUS counting, i.e.,
the problem is to count the number of MUSes of an input unsat-
isfiable CNF formula C. Current applications of MUS counting in-
clude mainly various inconsistency metrics for general propositional
knowledge bases such as those presented in [Hunter and Konieczny,
2008, Thimm, 2018, Mu, 2019].

In contrast to the progress in the design of efficient MUS identi-
fication techniques, the work on MUS counting is still in its nascent
stages. The current approach for MUS counting is the most straight-
forward one, i.e., to employ a complete MUS enumeration algorithm,
e.g., [Stern et al., 2012, Liffiton and Malik, 2013, Bacchus and Katsire-
los, 2016, Bendík and Černá, 2020c], to explicitly identify all MUSes.
However, as we noted in Section 2, there can be in general up to
exponentially many MUSes w.r.t. the number of clauses in C. Thus
the complete MUS enumeration is still often practically intractable
(which we in fact witnessed in our experimental evaluation in Sec-
tion 5.4). Thus, MUS enumeration algorithms cannot be used for
MUS counting when the complete enumeration is intractable. In this
context, one asks the question: whether it is possible to count the MUSes
without performing an explicit MUS enumeration?

110 minimal sets over a monotone predicate: enumeration and counting

The primary contribution of this chapter is an affirmative an-
swer to the above question. In particular, we present a probabilis-
tic counter, called AMUSIC, that takes in a CNF formula C, a toler-
ance parameter ε, a confidence parameter δ, and it returns an esti-
mate guaranteed to be within p1� εq-multiplicative factor of the exact
count with confidence at least 1� δ. Crucially, for C defined over n
clauses, AMUSIC explicitly identifies only Oplog n � logp1{δq � pεq�2q

many MUSes even though the number of MUSes can be exponential
in n.

The design of AMUSIC is inspired by recent successes in the de-
sign of efficient XOR hashing-based techniques [Chakraborty et al.,
2013, 2016] for the problem of model counting, i.e., given a Boolean
formula G, compute the number of models of G. We observe that
both the problems are defined over a power-set structure. In MUS
counting, the goal is to count MUSes in the power-set of C, whereas
in model counting, the goal is to count models in the power-set that
represents all valuations of variables of G. A few years ago, there
was proposed an algorithm, called ApproxMC [Chakraborty et al.,
2016, Soos and Meel, 2019], for approximate model counting that
also provides the (ε, δ) guarantees. ApproxMC is currently already
in its fourth version, ApproxMC4 [Soos et al., 2020]. The base idea of
ApproxMC4 is to partition the power-set into nCells small cells, then
pick one of the cells, and count the number inCell of models in the
cell. The total model count is then estimated as nCells� inCell. Our
algorithm for MUS counting is based on ApproxMC4. We adopt the
high-level idea to partition the power-set of C into small cells and
then estimate the total MUS count based on an MUS count in a sin-
gle cell. The difference between ApproxMC4 and AMUSIC lies in the
way of counting the target elements (models vs. MUSes) in a single
cell; we propose novel MUS specific techniques to deal with this task.
In particular, our contribution is the following:

• We introduce a QBF (quantified Boolean formula) encoding for the
problem of counting MUSes in a single cell and use a ΣP

3 oracle (a
3QBF solver) to solve it.

• Let UMUSC and IMUSC be the union and the intersection of all
MUSes of C, respectively. We observe that every MUS of C (1)
contains IMUSC and (2) is contained in UMUSC. Consequently, if
we determine the sets UMUSC and IMUSC, then we can significantly
speed up the identification of MUSes in a cell.

• We propose a novel approaches for computing the union UMUSC

and the intersection IMUSC of all MUSes of C.

• We implement AMUSIC and conduct an extensive empirical eval-
uation on a set of scalable benchmarks. We observe that AMUSIC

is able to compute estimates for problems clearly beyond the reach
of existing enumeration-based techniques. We experimentally eval-
uate the accuracy of AMUSIC. In particular, we observe that the es-

boolean cnf mus counting 111

timates computed by AMUSIC are significantly closer to true count
than the theoretical guarantees provided by AMUSIC.

Our work opens up several new interesting avenues of research.
From a theoretical perspective, we make polynomially many calls to
a ΣP

3 oracle while the problem of finding an MUS is known to be in
FPNP, i.e. an MUS can be found in polynomial time by executing a
polynomial number of calls to an NP-oracle [Chen and Toda, 1995,
Marques-Silva and Janota, 2014]. Contrasting this to model counting
techniques, where approximate counter makes polynomially many
calls to an NP-oracle when the underlying problem of finding satis-
fying assignment is NP-complete, a natural question is to close the
gap and seek to design an MUS counting algorithm with polynomi-
ally many invocations of an FPNP oracle. From a practitioner per-
spective, our work calls for a design of MUS techniques with native
support for XORs; the pursuit of native support for XOR in the con-
text of SAT solvers have led to an exciting line of work over the past
decade [Soos et al., 2009, Soos and Meel, 2019].

7.1 Preliminaries and Problem Formulation

Throughout the whole chapter, we use C to denote the input unsat-
isfiable set of Boolean clauses, i.e. a CNF formula. We use AMUSC

to denote the set of all MUSes of C. Furthermore, we write UMUSC

and IMUSC to denote the union and the intersection of all MUSes of
C, respectively. Note that every subset S of C can be expressed as a
bit-vector over the alphabet t0, 1u; for example, if C � tc1, c2, c3, c4u

and S � tc1, c4u, then the bit-vector representation of S is 1001. As in
the previous two chapters, given an unsatisfiable subset N of C and
a clause c P N, we say that c is critical for N iff Nztcu is satisfiable.

A quantified Boolean formula, shortly QBF, is a Boolean formula
where each variable is either universally (@) or existentially (D) quan-
tified. We write Q1 � � �Qk-QBF, where Q1, . . . Qk P t@, Du, to denote
the class of QBF with a particular type of alternation of the quan-
tifiers, e.g., D@-QBF or D@D-QBF. Every QBF is either true (valid) or
false (invalid). The problem of deciding validity of a formula in
Q1 � � �Qk-QBF where Q1 � D is ΣP

k -complete [Meyer and Stockmeyer,
1972].

When it is clear from the context, we write just formula to de-
note either a QBF or a Boolean formula in CNF. Importantly, due
to technical reasons, we use t1, 0u as the Boolean values instead of
tTrue, Falseu as we did in the other chapters.

We write PrrO : Ps to denote the probability of an outcome O
when sampling from a probability space P. When P is clear from
the context, we write just PrrOs.

Hash Functions

Let n and m be positive integers such that m n. By t1, 0un we
denote the set of all bit-vectors of length n over the alphabet t1, 0u.

112 minimal sets over a monotone predicate: enumeration and counting

Given a vector v P t1, 0un and i P t1, . . . , nu, we write vris to denote
the i-th bit of v. A hash function h from a family Hxorpn, mq of hash
functions maps t1, 0un to t1, 0um. The family Hxorpn, mq is defined as
th | hpyqris � ai,0 ` p

Àn
k�1pai,k ^ yrksqq for all 1 ¤ i ¤ mu, where ` and

^ denote the Boolean XOR and AND operators, respectively, and
ai,k P t1, 0u for all 1 ¤ i ¤ m and 1 ¤ k ¤ n.

To choose a hash function uniformly at random from Hxorpn, mq,
we randomly and independently choose the values of ai,k. It has been
shown [Gomes et al., 2006] that the family Hxorpn, mq is pairwise in-
dependent, also known as strongly 2-universal. In particular, let us
by h Ð Hxorpn, mq denote the probability space obtained by choos-
ing a hash function h uniformly at random from Hxorpn, mq. The
property of pairwise independence guarantees that for all α1, α2 P

t1, 0um and for all distinct y1, y2 P t1, 0un, Prr
�2

i�1 hpyiq � αi : h Ð
Hxorpn, mqs � 2�2m.

We say that a hash function h P Hxorpn, mq partitions t0, 1un into
2m cells. Furthermore, given a hash function h P Hxorpn, mq and a cell
α P t1, 0um of h, we define their prefix-slices. In particular, for every
k P t1, . . . , mu, the kth prefix of h, denoted hpkq, is a map from t1, 0un

to t1, 0uk such that hpkqpyqris � hpyqris for all y P t1, 0un and for all
i P t1, . . . , ku. Similarly, the kth prefix of α, denoted αpkq, is an element
of t1, 0uk such that αpkqris � αris for all i P t1, . . . , ku. Intuitively, a cell
αpkq of hpkq originates by merging the two cells of hpk�1q that differ
only in the last bit.

In our work, we use hash functions from the family Hxorpn, mq to
partition the power-set PpCq of the given Boolean formula C into 2m

cells. In particular, each subset N of C is uniquely identified by its
bit-vector representation bitpNq P t1, 0u|C|, i.e., a hash function h P
Hxorp|C|, mq divides the power-set PpCq into 2m cells. Furthermore,
given a cell α P t0, 1um, let us by AMUxC,h,αy denote the set of all MUSes
in the cell α of h; formally, AMUxC,h,αy � tM P AMUSC | hpbitpMqq � αu,
where bitpMq is the bit-vector representation of M. The following
observation is crucial for our work.

Proposition 7.1. For every formula C, m P t1, . . . , |C| � 1u, a hash func-
tion h P Hxorp|C|, mq, and a cell α P t0, 1um it holds that: AMUxC,hpiq,αpiqy �

AMUxC,hpjq,αpjqy for every i j.

Proof. Let M be an MUS from AMUxC,hpjq,αpjqy, i.e., hpjqpbitpMqq � αpjq.

Since i j, then by the definition of the prefix slices, αpiqrks � αpjqrks
and hpiqpbitpMqqrks � hpjqpbitpMqqrks for all k P t1, . . . , iu. Conse-
quently, hpiqpbitpMqq � αpiq, i.e., M is in AMUxC,hpiq,αpiqy. Since M is
arbitrary, we conclude that AMUxC,hpiq,αpiqy � AMUxC,hpjq,αpjqy.

Example 7.1. Assume that we are given a formula C such that |C| � 4
and a hash function h P Hxorp4, 2q that is defined via the following values
of individual ai,k:

a1,0 � 0, a1,1 � 1, a1,2 � 1, a1,3 � 0, a1,4 � 1
a2,0 � 0, a2,1 � 1, a2,2 � 0, a2,3 � 0, a2,4 � 1

boolean cnf mus counting 113

0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

(a)

0000

01001000 0010 0001

1100 1010 1001 0110 0101 0011

1110 1101 1011 0111

1111

(b)

Figure 7.1: Illustration of the
partition of PpCq by h � hp2q

and hp1q from Example 7.1.
Figure (a) illustrates hp2q with
4 cells: α1 � 00 , α2 � 01 ,

α3 � 10 , and α4 � 11 . Fig-

ure (b) illustrates hp1q with 2

cells: α1 � 0 and α2 � 1 .

The hash function partitions PpCq into 4 cells. For example, hp1100q �
01 since hp1100qr1s � 0` p1^ 1q ` p1^ 1q ` p0^ 0q ` p1^ 0q � 0 and
hp1100qr2s � 0` p1^ 1q ` p0^ 1q ` p0^ 0q ` p1^ 0q � 1. Figure 7.1
illustrates the whole partition and also illustrates the partition given by the
prefix hp1q of h.

7.1.1 Problem Definitions

In this part of the thesis, we are concerned with the following prob-
lems.

Name: pε, δq-#MUS problem
Input: A formula C, a tolerance ε ¡ 0, and a confidence 1� δ P p0, 1s.
Output: A number c such that Prr|AMUSC|{p1� εq ¤ c ¤ |AMUSC| � p1�
εqs ¥ 1� δ.

Name: MUS-membership problem
Input: A formula C and a clause f P C.
Output: True if there is an MUS M P AMUSC such that f P M and False
otherwise.

Name: MUS-union problem
Input: A formula C.
Output: The union UMUSC of all MUSes of C.

Name: MUS-intersection problem
Input: A formula C.
Output: The intersection IMUSC of all MUSes of C.

Name: pε, δq-#SAT problem
Input: A formula C, a tolerance ε ¡ 0, and a confidence 1� δ P p0, 1s.
Output: A number m such that Prrm{p1� εq ¤ c ¤ m � p1� εqs ¥

1� δ, where m is the number of models of C.

Our main goal is to provide a solution to the pε, δq-#MUS problem.
We also deal with the MUS-membership, MUS-union and MUS-intersec-

tion problems since these problems emerge in our approach for solv-
ing the pε, δq-#MUS problem. Finally, we do not focus on solving the
pε, δq-#SAT problem, however the problem is closely related to the
pε, δq-#MUS problem.

114 minimal sets over a monotone predicate: enumeration and counting

7.2 Related Work

It is well-known (see e.g., [de Kleer and Williams, 1987, Reiter, 1987,
Liffiton and Sakallah, 2008]) that a clause f P C belongs to IMUSC iff f
is critical for C. Therefore, to compute IMUSC, one can simply check
each f P C for being critical for C. We are not aware of any work that
has focused on the MUS-intersection problem in more detail.

The MUS-union problem was recently investigated by Mencia et
al. [Mencía et al., 2019]. Their algorithm is based on gradually refin-
ing an under-approximation of UMUSC until the exact UMUSC is com-
puted. Unfortunately, the authors experimentally show that their
algorithm often fails to find the exact UMUSC within a reasonable
time limit even for relatively small input instances (only an under-
approximation is computed). In this chapter, we propose an ap-
proach that works in the other way: we initially compute an over-
approximation of UMUSC and then gradually refine the approximation
to eventually get UMUSC. Another related research was conducted by
Janota and Marques-Silva [Janota and Marques-Silva, 2011] who pro-
posed several QBF encodings for solving the MUS-membership prob-
lem. Although they did not focus on finding UMUSC, one can identify
UMUSC by solving the MUS-membership problem for each c P C.

As for counting the number of MUSes of C, we are not aware of
any previous work dedicated to this problem. Yet, there have been
proposed plenty of algorithms and tools for enumerating/identifying
all MUSes of C (please refer to Section 5.3 for an overview). Clearly,
if we enumerate all MUSes of C, then we obtain the exact value of
|AMUSC|, and thus we also solve the pε, δq-#MUS problem. However,
since there can be up to exponentially many of MUSes w.r.t. |C|,
MUS enumeration algorithms are often not able to complete the enu-
meration in a reasonable time and thus are not able to find the value
of |AMUSC|.

Very similar to the pε, δq-#MUS problem is the pε, δq-#SAT prob-
lem. Both problems involve the same probabilistic and approxi-
mation guarantees. Moreover, both problems are defined over a
power-set structure. In MUS counting, the goal is to count MUSes
in PpCq, whereas in model counting, the goal is to count models
in PpVarspCqq. In this chapter, we propose an algorithm for solv-
ing the pε, δq-#MUS problem that is based on the approximate model
counter ApproxMC4 [Chakraborty et al., 2013, 2016, Soos et al., 2020].
In particular, we keep the high-level idea of ApproxMC4 for process-
ing/exploring the power-set structure, and we propose new low-
level techniques that are specific for MUS counting.

7.3 AMUSIC: A Hashing-Based MUS Counter

We now describe AMUSIC, a hashing-based algorithm designed to
solve the (ε, δq-#MUS problem. The name of the algorithm is an
acronym for Approximate Minimal Unsatisfiable Subsets Implicit
Counter1. AMUSIC is based on ApproxMC4, which is a hashing-based

1 Note that the name of the algorithm
also captures the musical qualities of its
authors.

boolean cnf mus counting 115

algorithm to solve the pε, δq-#SAT problem. As such, while the high-
level structure of AMUSIC and ApproxMC4 share close similarities,
the two algorithms differ significantly in the design of core technical
subroutines.

We first discuss the high-level structure of AMUSIC in Section 7.3.1.
We then present the key technical contributions of this chapter: the
design of core subroutines of AMUSIC in Sections 7.3.3, 7.3.4 and
7.3.5.

7.3.1 Algorithmic Overview

The main procedure of AMUSIC is presented in Algorithm 7.1. The
algorithm takes as an input a Boolean formula C in CNF, a tolerance
parameter ε p¡ 0q, and a confidence parameter δ P p0, 1s, and returns
an estimate of |AMUSC| within tolerance ε and with confidence at least
1� δ. Similar to ApproxMC4, we first check whether |AMUSC| is smaller
than a specific threshold that is a function of ε. This check is carried
out via an MUS enumeration algorithm, denoted findMUSes, that re-
turns a set Y of MUSes of C such that |Y| � minpthreshold, |AMUSC|q. If
|Y| threshold, the algorithm terminates while identifying the ex-
act value of |AMUSC|. In a significant departure from ApproxMC4,
AMUSIC subsequently computes the union (UMUSC) and the intersec-
tion (IMUSC) of all MUSes of C by invoking the subroutines getUMU

and getIMU, respectively. Through the lens of set representation of
the CNF formulas, we can view UMUSC as another CNF formula,
G. Our key observation is that AMUSC � AMUSG (see Section 7.3.2),
thus instead of working with the whole C, we can focus only on
G. The rest of the main procedure is similar to ApproxMC4, i.e.,
we repeatedly invoke the core subroutine called AMUSICCore. The
subroutine attempts to find an estimate c of |AMUSG| within the toler-
ance ε. Briefly, to find the estimate, the subroutine partitions PpGq
into nCells cells, then picks one of the cells, and counts the num-
ber nSols of MUSes in the cell. The pair pnCells, nSolsq is returned
by AMUSICCore, and the estimate c of |AMUSG| is then computed as
nSols� nCells. There is a small chance that AMUSICCore fails to find
the estimate; in such a case nCells � nSols � null. Individual esti-
mates are stored in a list S. After the final invocation of AMUSICCore,
AMUSIC computes the median of the list S and returns the median
as the final estimate of |AMUSG|. The total number of invocations
of AMUSICCore is in Oplogp1{δqq which is enough to ensure the re-
quired confidence 1� δ (details on assurance of the pε, δq guarantees
are provided in Section 7.3.2).

We now turn to AMUSICCore which is described in Algorithm 7.2.
The partition of PpGq into nCells cells is made via a hash function
h from Hxorp|G|, mq, i.e. nCells � 2m. The choice of m is a crucial
part of the algorithm as it regulates the size of the cells. Intuitively,
it is easier to identify all MUSes of a small cell. However, on the
contrary, the use of small cells does not allow to achieve a reasonable
tolerance. For example, based on a cell that contains two subsets of

116 minimal sets over a monotone predicate: enumeration and counting

input : an unsatisfiable set C of Boolean clauses
input : a tolerance ε ¡ 0
input : a confidence parameter δ

output: a number c such that Prr|AMUSC|{p1� εq ¤ c ¤ |AMUSC| � p1� εqs ¥ 1� δ

1 threshold Ð 1� 9.84p1� ε
1�ε qp1�

1
ε q

2

2 Y Ð findMUSespC, thresholdq // external MUS enumeration algorithm

3 if |Y| threshold then return |Y|
4 G Ð getUMUpCq // Algorithm 7.5

5 IG Ð getIMUpGq // Algorithm 7.6

6 nCells Ð 2; S Ð emptyList; iter Ð 0
7 while iter r17 log2p3{δqs do
8 iter Ð iter� 1
9 pnCells, nSolsq Ð AMUSICCorepG, IG, threshold, nCellsq // Algorithm 7.2

10 if nCells � null then addToListpS, nCells� nSolsq

11 return findMedianpSq

Algorithm 7.1: Probabilistic approximate MUS counting algorithm AMUSIC.

1 Choose h at random from Hxorp|G|, |G| � 1q
2 Choose α at random from t0, 1u|G|�1

3 nSols Ð countInCellpG, IG, h, α, thresholdq // Algorithm 7.4

4 if nSols � threshold then return pnull, nullq
5 if prevNCells � null then mPrev Ð log2 prevNCells
6 else mPrev Ð 2
7 pnCells, nSolsq Ð logMUSSearchpG, IG, h, α, threshold, mPrevq // Algorithm 7.3

8 return pnCells, nSolsq

Algorithm 7.2: AMUSICCorepG, IG, threshold, prevNCellsq

G we can get only three possible estimates on the MUS count, since
there can be only zero, one, or two MUSes in the cell. Based on
ApproxMC4, we choose m such that a cell given by a hash function
h P Hxorp|G|, mq contains almost threshold many MUSes.

In particular, the computation of AMUSICCore starts by choosing
at random a hash function h from Hxorp|G|, |G| � 1q and a cell α at
random from t0, 1u|G|�1. Subsequently, the algorithm tends to iden-
tify mth prefixes hpmq and αpmq of h and α, respectively, such that
|AMUxG,hpmq,αpmqy| threshold and |AMUxG,hpm�1q,αpm�1qy| ¥ threshold. Re-
call that AMUxG,hp1q,αp1qy � � � � � AMUxG,hp|G|�1q,αp|G|�1qy (Proposition 7.1,

Section 7.1). We also know that the cell αp0q, i.e. the whole PpGq,
contains at least threshold MUSes (see Algorithm 7.1, line 3). Con-
sequently, there can exist at most one such m, and it exists if and
only if |AMUxG,hp|G|�1q,αp|G|�1qy| threshold. Therefore, the algorithm
first checks whether |AMUxG,hp|G|�1q,αp|G|�1qy| threshold. The check is
carried via a procedure countInCell that returns the number nSols �

minp|AMUxG,hp|G|�1q,αp|G|�1qy|, thresholdq. If nSols � threshold, then the
procedure AMUSICCore fails to find the estimate of |AMUSG| and ter-
minates. Otherwise, a procedure logMUSSearch is used to find the

boolean cnf mus counting 117

1 low Ð 0; high Ð |G| � 1
2 m Ð mPrev
3 finalCount Ð null

4 count Ð CountInCellpG, IG, hpmq, αpmq, thresholdq // Algorithm 7.4

5 if count � threshold then
6 low Ð m
7 else
8 finalCount Ð count
9 count Ð CountInCellpG, IG, hpm�1q, αpm�1q, thresholdq // Algorithm 7.4

10 if count � threshold then
11 return p2m, finalCountq
12 else
13 high Ð m� 1
14 finalCount Ð count
15 while high� low ¡ 1 do
16 m Ð rplow� highq{2s
17 count Ð CountInCellpG, IG, hpmq, αpmq, thresholdq // Algorithm 7.4

18 if count � threshold then
19 low Ð m
20 else
21 high Ð m
22 finalCount Ð count
23 return p2high, finalCountq

Algorithm 7.3: logMUSSearchpG, IG, h, α, threshold, mPrevq

required value of m together with the number nSols of MUSes in
αpmq.

The procedure logMUSSearch, shown in Algorithm 7.3, is built
from two ingredients. First, based on our empirical experience, the
target value of m is often similar for repeated calls of AMUSICCore.
Therefore, AMUSIC keeps the value mPrev of m from previous iter-
ation and in each call of logMUSSearch, we start by testing whether
mPrev is again the target value. In particular, logMUSSearch employs
the procedure countInCell to find out whether the cells αpmPrevq and
αpmPrev�1q contain fewer and at least as many MUSes as threshold,
respectively (lines 4 and 9). Recall that countInCell returns either the
exact MUS count in a given cell if the count is lower than threshold,
and threshold otherwise. If it is the case that αpmPrevq contains fewer
MUSes than threshold and αpmPrev�1q contains more MUSes than thre-

shold, then logMUSSearch terminates and returns the number 2mPrev

of cells constituted by hpmPrevq together with the number of MUSes
in the cell αpmPrevq.

If mPrev is not the target value, the second ingredient comes into
play. Since it holds that AMUxG,hp1q,αp1qy � � � � � AMUxG,hp|G|�1q,αp|G|�1qy,
i.e. the prefix slices are totally ordered w.r.t. the MUS count, we
can find the target value of m via binary search. In the pseudocode,
we use the variables low and high to maintain the searching inter-

118 minimal sets over a monotone predicate: enumeration and counting

val where the binary search operates. The invariant of the search is
that |AMUxG,hplowq,αplowqy| ¥ threshold and |AMUxG,hphighq,αphighqy| threshold.
Thus, once high� low � 1, it is guaranteed that high is the target value
of m. The return value is the number of cells of hphighq, i.e., 2high, and
the number of MUSes in the cell αphighq (we use the variable finalCount
to maintain this MUS count). The initial values of low and high are set
based on the two initial calls of countInCell (the calls on lines 4 and
9). In particular, the initial search interval is either r0, . . . , mPrev� 1s
or rmPrev, . . . , |G| � 1s.

Finally, let us note that in ApproxMC4, the procedure countInCell is
called BSAT and it is implemented via an NP oracle, whereas we use
a ΣP

3 oracle to implement the procedure (see Section 7.3.3). The high-
level functionality is the same: the procedures use up to threshold

calls of the oracle to check whether the number of the target elements
(models vs. MUSes) in a cell is lower than threshold.

7.3.2 Analysis and Comparison With ApproxMC4

Following from the discussion above, there are three crucial technical
differences between AMUSIC and ApproxMC4: (1) the implementation
of the subroutine countInCell in the context of MUSes, (2) computa-
tion of the intersection IMUSC of all MUSes of C and its usage in
countInCell, and (3) computation of the union UMUSC of all MUSes of
C and invocation of the underlying subroutines with G (i.e., UMUSC)
instead of C. The usage of countInCell can be viewed as domain-
specific instantiation of BSAT in the context of MUSes. Furthermore,
we use the computed intersection of MUSes to improve the runtime
efficiency of countInCell. It is perhaps worth mentioning that prior
studies have observed that over 99% of the runtime of ApproxMC4

is spent inside the subroutine BSAT [Soos and Meel, 2019]. There-
fore, the runtime efficiency of countInCell is crucial for the runtime
performance of AMUSIC, and we discuss in detail, in Section 7.3.3,
algorithmic contributions in the context of countInCell including us-
age of IMUSC.

We now argue that the replacement of C with G in Algorithm 7.1,
line 4, does not affect correctness guarantees, which is stated for-
mally below:

Proposition 7.2. For every G1 such that UMUSC � G1 � C, the following
hold:

AMUSC � AMUSG1 (7.1)

IMUSC � IMUSG1 (7.2)

Proof. (1) Since G1 � C then every MUS of G1 is also an MUS of C. In
the other direction, every MUS of C is contained in the union UMUSC

of all MUSes of C, and thus every MUS of C is also an MUS of G1

(since G1 � UMUSC).
(2) IMUSC �

�
MPAMUSC

�
�

MPAMUSG1
� IMUSG1 .

boolean cnf mus counting 119

1 MÐ tu

2 while |M| threshold do
3 M Ð getMUSpG, IG,M, h, αq // via a 3QBF solver, see Section 7.3.3

4 if M � null then return |M|

5 MÐMY tMu
6 return |M|

Algorithm 7.4: countInCellpG, IG, h, α, thresholdq

Equipped with Proposition 7.2, we now argue that each run of
AMUSIC can be simulated by a run of ApproxMC4 for an appropri-
ately chosen formula. In particular, given an unsatisfiable formula
C � t f1, . . . , f|C|u, let us by BC denote a satisfiable formula such that:
(1) VarspBCq � tx1, . . . , x|C|u and (2) an assignment I : VarspBCq Ñ

t1, 0u is a model of BC iff t fi|Ipxiq � 1u is an MUS of C. Informally,
models of BC one-to-one map to MUSes of C. Hence, the size of
sets returned by countInCell for C is identical to the corresponding
BSAT for BC. Since the analysis of ApproxMC4 only depends on the
correctness of the size of the set returned by BSAT, we conclude that
the answer computed by AMUSIC would satisfy the pε, δq guaran-
tees. Furthermore, observing that AMUSIC performs r17 log2p3{δqs
many iterations, each iterations performs Oplog |C|q many invoca-
tions of countInCell, and countInCell makes up to threshold � 1 �
9.84p1� ε

1�ε qp1�
1
ε q

2 many queries to ΣP
3 -oracle, we can bound the

time complexity. Formally,

Proposition 7.3. Given a formula C, a tolerance ε ¡ 0, and a confidence
1� δ P p0, 1s, let AMUSICpC, ε, δq return c. Then Prr|AMUSC|{p1� εq ¤

c ¤ |AMUSC| � p1� εqs ¥ 1� δ. Furthermore, AMUSIC makes Oplog |C| �
1
ε2 � logp1{δqq calls to ΣP

3 oracle.

Few words are in order concerning the complexity of AMUSIC.
As noted at the beginning of this chapter (Chapter 7), given a for-
mula with n variables, ApproxMC4 make Oplog n � 1

ε2 � logp1{δqq calls
to an NP-oracle, whereas the task of finding a model of a formula
requires a single call of an NP-oracle (a SAT solver). On the other
hand, AMUSIC makes calls to a ΣP

3 -oracle (Section 7.3.3) while the
problem of finding an MUS is in FPNP. Therefore, a natural direction
of future work is to design a hashing-based MUS counting technique
that relies on an FPNP-oracle.

7.3.3 Counting MUSes in a Cell: countInCell

In this section, we describe the procedure countInCell. The input of
the procedure is the formula G (i.e., UMUSC), the set IG � IMUG, a
hash function h P Hxorp|G|, mq, a cell α P t0, 1um, and the threshold

value. The output is the number minpthreshold, |AMUxG,h,αy|q.
The description is provided in Algorithm 7.4. The algorithm iter-

atively searches for MUSes in the cell α and stores them to a set M.
To find each single MUS, the algorithm calls a procedure getMUS

120 minimal sets over a monotone predicate: enumeration and counting

that returns either an MUS M such that M P pAMUxG,h,αyzMq or
null if there is no such MUS. The algorithm terminates either when
getMUS returns null, i.e. M contains all MUSes from α, or when
|M| � threshold. The return value is the size of M.

getMUS To implement the procedure getMUS, we build an D@D-
QBF formula MUSInCell such that each witness of the formula cor-
responds to an MUS from AMUxG,h,αyzM. The formula consists of
several parts and uses several sets of variables that are described in
the following.

The main part of the formula, shown in Equation (7.3), introduces
the first existential quantifier and a set P � tp1, . . . , p|G|u of variables
that are quantified by the quantifier. Note that each valuation I of
P corresponds to a subset S of G; in particular let us by IP,G denote
the set t fi P G | Ippiq � 1u. The formula is build in such a way that a
valuation I is a witness of the formula if and only if IP,G is an MUS
from AMUxG,h,αyzM. This property is expressed via three conjuncts,
denoted inCell(P), unexplored(P), and isMUS(P), encoding that
(i) IP,G is in the cell α, (ii) IP,G is not in M, and (iii) IP,G is an MUS,
respectively.

MUSInCell � DP. inCellpPq ^ unexploredpPq ^ isMUSpPq (7.3)

Recall that the family Hxorpn, mq of hash functions is defined as
th | hpyqris � ai,0 ` p

Àn
k�1 ai,k ^ yrksq for all 1 ¤ i ¤ mu, where ai,k P

t0, 1u (Section 7.1). A hash function h P Hxorpn, mq is given by fixing
the values of individual ai,k and a cell α of h is a bit-vector from
t0, 1um. The formula inCellpPq encoding that the set IP,G is in the
cell α of h is shown in Equation (7.4).

inCell(P) �
m©

i�1

pai,0 ` p
à

pPtpk|ai,k�1u

pq ` αrisq (7.4)

To encode that we are not interested in MUSes from M, we can
simply block all the valuations of P that correspond to these MUSes.
However, we can do better. In particular, recall that if M is an MUS,
then no proper subset and no proper superset of M can be an MUS;
thus, we prune away all these sets from the search space. The corre-
sponding formula is shown in Equation (7.5).

unexplored(P) �
©

MPM
pp
ª
fiPM

 piq ^ p
ª
fiRM

piqq (7.5)

The formula isMUSpPq encoding that IP,G is an MUS is shown in
Equation (7.6). Recall that IP,G is an MUS if and only if IP,G is un-
satisfiable and for every closest subset S of IP,G it holds that S is sat-
isfiable, where closest subset means that |IP,GzS| � 1. We encode
these two conditions using two subformulas denoted by unsatpPq
and noUnsatSubsetpPq.

isMUS(P) � unsat(P)^ noUnsatSubset(P) (7.6)

boolean cnf mus counting 121

The formula unsat(P), shown in Equation (7.7), introduces the set
VarspGq of variables that appear in G and states that every valuation
of VarspGq falsifies at least one clause contained in IP,G.

unsat(P) � @VarspGq.
ª
fiPG

ppi ^ fiq (7.7)

The formula noUnsatSubset(P), shown in Equation (7.8), intro-
duces another set of variables: Q � tq1, . . . , q|G|u. Similarly as in the
case of P, each valuation I of Q corresponds to a subset of G defined
as IQ,G � t fi P G | Ipqiq � 1u. The formula expresses that for every
valuation I of Q it holds that IQ,G is satisfiable or IQ,G is not a closest
subset of IP,G.

noUnsatSubset(P) � @Q. sat(Q)_ subset(Q, P) (7.8)

Equation (7.9) encodes the requirement that IQ,G is satisfiable.
Since we are already reasoning about the satisfiability of G’s clauses
in Equation (7.7), we introduce here a copy G1 of G where each vari-
able xi of G is substituted by its primed copy x1i . Equation (7.9) states
that there exists a valuation of VarspG1q that satisfies IQ,G.

sat(Q) � DVarspG1q.
©
fiPG1

p qi _ fiq (7.9)

Equation (7.10) encodes that IQ,G is a closest subset of IP,G. To
ensure that IQ,G is a subset of IP,G, we add the clauses qi Ñ pi. To
ensure the closeness, we use cardinality constraints. In particular, we
introduce another set R � tr1, . . . , r|G|u of variables and enforce their
values via ri Ø ppi ^ qiq. Intuitively, the number of variables from
R that are set to 1 equals to |IP,GzIQ,G|. Finally, we add cardinality
constraints, denoted by exactlyOne(R), ensuring that exactly one ri

is set to 1.

subset(Q, P) � DR.
©
piPP

ppqi Ñ piq ^ pri Ø ppi ^ qiqq

^ exactlyOne(R)
(7.10)

Note that instead of encoding a closest subset in Equation 7.10, we
could just encode that IQ,G is an arbitrary proper subset of IP,G as
it would still preserve the meaning of Equation 7.6 that IP,G is an
MUS. Such an encoding would not require introducing the set R
of variables and also, at the first glance, would save a use of one
existential quantifier. The thing is that the whole formula would still
be in the form of D@D-QBF due to Equation 7.9 (which introduces the
second existential quantifier). The advantage of using a closet subset
is that we significantly prune the search space of the QBF solver.
It is thus matter of contemporary QBF solvers whether it is more
beneficial to reduce the number of variables (by removing R) or to
prune the searchspace via R.

For the sake of lucidity, we have not exploited the knowledge of
IMUG (IG) while presenting the above equations. Since we know that

122 minimal sets over a monotone predicate: enumeration and counting

every clause f P IMUG has to be contained in every MUS of G, we
can fix the values of the variables tpi | fi P IMUGu to 1. This, in turn,
significantly simplifies the equations and prunes away exponentially
many (w.r.t. |IMUG|) valuations of P, Q, and R, that need to be as-
sumed. To solve the final formula, we employ a D@D-QBF solver, i.e.,
a ΣP

3 oracle.
One may wonder why we use our custom solution for identifying

MUSes in a cell instead of employing one of existing MUS extraction
techniques. Conventional MUS extraction algorithms cannot be used
to identify MUSes that are in a cell since the cell is not “continuous”
w.r.t. the set containment. In particular, assume that we have three
sets of clauses, K, L, M, such that K � L � M. It can be the case that
K and M are in the cell, but L is not in the cell. Contemporary MUS
extraction techniques require the search space to be continuous w.r.t.
the set containment and thus cannot be used in our case.

Finally, observing that AMUSIC performs multiple iterations, and
especially multiple calls of the procedure countInCell, one might think
of storing all the MUSes AMUSIC already identified into a set known-
MUSes, and then use knownMUSes to speed up the further computa-
tion. In particular, whenever we call countInCell to count MUSes in
a cell α, we could first check if some MUSes of knownMUSes are in
the cell and hence possibly save some invocations of the QBF solver.
We actually tried this and it brought no improvement; the thing is
that we assume exponentially many cells w.r.t. |C| and hence the
probability that an MUS repeatedly falls into a cell we examine is
extremely low. Another possible use of knownMUSes would be to
prune the search space of the QBF solver when solving the QBF en-
coding. In particular, like in Equation (7.5), we could remove all sub-
sets and all supersets of the already known MUSes from the search
space. We have also tried this, however, it actually slowed down the
computation.

7.3.4 Computing UMUSC

We now turn our attention to computing the union UMUSC (i.e., G) of
all MUSes of C. Let us start by describing well-known concepts of
autark variables and a lean kernel. A set A � VarspCq of variables is an
autark of C iff there exists a truth assignment to A such that every
clause of C that contains a variable from A is satisfied by the assign-
ment [Monien and Speckenmeyer, 1985]. It holds that the union of
two autark sets is also an autark set, thus there exists a unique largest
autark set (see, e.g., [Kleine Büning and Kullmann, 2009, Kullmann,
2000b]). The lean kernel of C is the set of all clauses that do not con-
tain any variable from the largest autark set. It is known that the
lean kernel of C is an over-approximation of UMUSC (see e.g., [Kleine
Büning and Kullmann, 2009, Kullmann, 2000b]), and there were pro-
posed several algorithms, e.g., [Marques-Silva et al., 2014, Kullmann
and Marques-Silva, 2015]), for computing the lean kernel.

boolean cnf mus counting 123

1 K Ð the lean kernel of C; MÐ tu

2 for f P Kzt f P M |M PMu do
3 W Ð checkNecessityp f , Kq // via the QBF encoding in Eq. 7.11

4 if W � null then MÐMY tan MUS of Wu
5 else K Ð Kzt f u
6 return K

Algorithm 7.5: getUMUpCq

Algorithm Our approach for computing UMUSC consists of two steps.
First, we compute the lean kernel K of C to get an over-approximation
of UMUSC, and then we gradually refine the over-approximation K
until K is exactly the set UMUSC. The refinement is done by solving
the MUS-membership problem for each f P K. To solve the MUS-
membership problem efficiently, we reveal a connection to critical
clauses, as stated in the following proposition.

Proposition 7.4. A clause f P C belongs to UMUSC iff there is a subset
W of C such that W is unsatisfiable and f is critical for W (i.e., Wzt f u is
satisfiable).

Proof. ñ: Let f P UMUSC and M P AMUSC such that f P M. Since M is
an MUS then Mzt f u is satisfiable; thus f is critical for M.
ð: If W is a subset of C and f P W a critical clause for W then f
has to be contained in every MUS of W. Moreover, W has at least
one MUS and since W � C, then every MUS of W is also an MUS of
C.

Our approach for computing UMUSC is shown in Algorithm 7.5.
It takes as an input the formula C and outputs UMUSC (denoted K).
Moreover, the algorithm maintains a set M of MUSes of C. Initially,
M � H and K is set to the lean kernel of C; we use an approach
by Marques-Silva et al. [Marques-Silva et al., 2014] to compute the
lean kernel. At this point, we know that K � UMUSC � t f P M |M P

Mu. To find UMUSC, the algorithm iteratively determines for each
f P Kzt f P M |M P Mu if f P UMUSC. In particular, for each f , the
algorithm checks whether there exists a subset W of K such that f
is critical for W (Proposition 7.4). The task of finding W is carried
out by a procedure checkNecessity(f , K). If there is no such W, then
the algorithm removes f from K. In the other case, if W exists, the
algorithm finds an MUS of W and adds the MUS to the set M. Any
available single MUS extraction approach, e.g., [Belov and Marques-
Silva, 2012, Bacchus and Katsirelos, 2015, Belov et al., 2014, Nadel
et al., 2014], can be used to find the MUS.

To implement the procedure checkNecessity(f , K) we build a QBF
formula that is true iff there exists a set W � K such that W is un-
satisfiable and f is critical for W. To represent W we introduce a set
S � tsg | g P Ku of Boolean variables; each valuation I of S corre-

124 minimal sets over a monotone predicate: enumeration and counting

sponds to a subset IS,K of K defined as IS,K � tg P K | Ipsgq � 1u. Our
encoding is shown in Equation 7.11.

DS, VarspKq.@VarspK1q. s f ^ p
©

gPKzt fu

pg_ sgqq ^ p
ª
gPK1

p g^ sgqq

(7.11)
The formula consists of three main conjuncts. The first conjunct

ensures that f is present in IS,K. The second conjunct states that
IS,Kzt f u is satisfiable, i.e., that there exists a valuation of VarspKq
that satisfies IS,Kzt f u. Finally, the last conjunct expresses that IS,K

is unsatisfiable, i.e., that every valuation of VarspKq falsifies a clause
of IS,K. Since we are already reasoning about variables of K in the
second conjunct, in the third conjunct, we use a primed version (a
copy) K1 of K.

Alternative QBF Encodings Janota and Marques-Silva [Janota and
Marques-Silva, 2011] proposed three other QBF encodings for the
MUS-membership problem, i.e., for deciding whether a given clause
f of a formula K belongs to an MUS of K. Two of the three proposed
encodings are typically inefficient, thus we describe the two only
briefly. The third encoding is described in more detail.

The first encoding by Janota and Marques-Silva uses 3 levels of
quantifiers and it directly express that there exists an MUS S of K
that contains f . Intuitively: “there exists a subset S of K such that
f P S and all valuations of VarspKq falsify S (i.e., S is unsat) and for
all proper subsets of S there exist valuations that satisfy the subsets”.

Their second encoding uses only 2 levels of quantifiers, but it re-
quires a quadratic number of variables w.r.t. |K|. The encoding is
very similar to the first encoding, however, instead of expressing that
all proper subsets of S are satisfiable, it express that all closest proper
subsets of S are satisfiable (i.e., the subsets that differ only in one
clause). There are only linearly many closest subsets of S, thus they
can be enumerated in the formula.

Finally, their last and the best encoding uses only 2 levels of quan-
tifiers and only a linear number of variables w.r.t. |K|; we describe
this one in more detail. This encoding is based on the minimal hit-
ting set duality between MUSes and MCSes (Proposition 2.6). Due
to the duality, it holds that a clause f P K belongs to an MUS of
K if and only if f belongs to an MCS of K. Recall that every MCS
of K is a complement of an MSS of K. The encoding by Janota and
Marques-Silva expresses that there exists a subset D of K such that
f R D, D is satisfiable, and for all D1 such that D � D1 � K, the set
D1 is unsatisfiable (i.e., D is an MSS). To encode the sets D and D1,
they introduce two additional sets of variables: R � trg | g P Ku and
R1 � tr1g | g P Ku. In particular, each valuation I of R corresponds to
the set I�R,K � tg P K | Iprgq � 0u, and similarly each valuation I of R1

corresponds to the set I�R1,K � tg P K | Ipr1gq � 0u2. The QBF encoding

2 Note that in our encoding, in Equa-
tion 7.11, we use in a similar manner the
variables S to introduce a set IS,K . How-
ever, we use S as activation variables
(i.e., g P IS,K iff Ipsgq � 1), whereas here
the variables R are used as relaxation
variables (i.e., g P I�R,K iff Iprgq � 0).
The purpose (and the effect) of the ac-
tivation and relaxation variables is the
same: they encode a subset of K.

boolean cnf mus counting 125

is shown in Equations (7.12) and (7.13).

DR, VarspKq.@R1, VarspK1q. r f ^ p
©
gPK

pg_ rgqq

^ pR1 R Ñ p
ª
gPK1

p g^ r1gqqq
(7.12)

R1 R �
©
riPR

ri Ñ r1i ^
ª
riPR

 ri ^ r1i (7.13)

Equation (7.12) consists of three main conjuncts. The first con-
junct states that r f R I�R,K and the second conjunct states that I�R,K
is satisfiable. The third conjunct expresses that if I�R,K � I�R1,K, then
I�R1,K is unsatisfiable. To avoid a clash with the second conjunct, a
primed version K1 of K (i.e., a copy) is used in the third conjunct.
The property that I�R,K � I�R1,K is described via the formula R1 R
(Equation 7.13).

Compared to our encoding (Equation 7.11), both the encodings
use the same quantifiers; however, our encoding is smaller. In partic-
ular, the encoding by Janota and Marques-Silva uses 2� pVarspKq �
|K|q variables whereas our encoding uses only |K| � 2�VarspKq vari-
ables, and it leads to smaller formulas.

Implementation Recall that we compute UMUSC to reduce the search
space, i.e. instead of working with the whole C, we work only with
G � UMUSC. The soundness of this reduction is witnessed in Proposi-
tion 7.2 (Section 7.3.2). In fact, Proposition 7.2 shows that it is sound
to reduce the search space to any G1 such that UMUSC � G1 � C. Since
our algorithm for computing UMUSC subsumes repeatedly solving a
ΣP

2 -complete problem, it can be very time-consuming. Therefore, in-
stead of computing the exact UMUSC, we optionally compute only an
over-approximation G1 of UMUSC. In particular, we allow the user
of our algorithm to set a time limit for computing the lean kernel
K of C. Moreover, we use a time limit for executing the procedure
checkNecessity(f , K); if the time limit is exceeded for a clause f P K,
we conservatively assume that f P UMUSC, i.e., we over-approximate.

7.3.5 Computing IMUG

Our approach to compute the intersection IMUG (i.e., IG) of all MUSes
of G is composed of several ingredients. First, recall that a clause
f P G belongs to IMUG iff f is critical for G. Another ingredient is the
ability of contemporary SAT solvers to provide either a model or an
unsat core of a given unsatisfiable formula N � G, i.e., a small, yet not
necessarily minimal, unsatisfiable subset of N. The final ingredient
is a technique called model rotation. The technique was originally
proposed by Marques-Silva and Lynce [Marques-Silva and Lynce,
2011], and it serves to explore critical clauses based on other already
known critical clauses. In particular, let f be a critical clause for G
and I : VarspGq Ñ t0, 1u a model of Gzt f u. Since G is unsatisfiable,
the model I does not satisfy f . The model rotation attempts to alter

126 minimal sets over a monotone predicate: enumeration and counting

1 cands Ð G
2 K ÐH

3 while cands � H do
4 f Ð choose f P cands
5 psat?, I, coreq Ð isSATpGzt f uq // I is a model or core is an unsat core of pGzt f uq
6 if sat? then
7 R Ð RMRpG, f , Iq // external recursive model rotation procedure

8 K Ð KY t f u Y R
9 cands Ð candszpt f u Y Rq

10 else
11 cands Ð candsX core
12 return K

Algorithm 7.6: getIMUpGq

I by switching, one by one, the Boolean assignment to the variables
Varspt f uq. Each variable assignment I1 that originates from such an
alternation of I necessarily satisfies f and does not satisfy at least
one f 1 P G. If it is the case that there is exactly one such f 1, then f 1 is
critical for G. An improved version of model rotation, called recursive
model rotation, was later proposed by Belov and Marques-Silva [Belov
and Marques-Silva, 2011] who noted that the model rotation could
be recursively performed on the newly identified critical clauses.

Our approach for computing IMUG is shown in Algorithm 7.6. To
find IMUG, the algorithm determines for each f whether f is critical
for G. In particular, the algorithm maintains two sets: a set cands
of candidates on critical clauses and a set K of already known critical
clauses. Initially, K is empty and cands � G. At the end of compu-
tation, cands is empty and K equals to IMUG. The algorithm works
iteratively. In each iteration, the algorithm picks a clause f P cands
and checks Gzt f u for satisfiability via a procedure isSAT. Moreover,
isSAT returns either a model I or an unsat core core of Gzt f u. If
Gzt f u is satisfiable, i.e. f is critical for G, the algorithm employs the
recursive model rotation, denoted by RMR(G, f , I), to identify a set
R of additional critical clauses. Subsequently, all the newly identi-
fied critical clauses are added to K and removed from cands. In the
other case, when Gzt f u is unsatisfiable, the set cands is reduced to
cands X core since every critical clause of G has to be contained in
every unsatisfiable subset of G. Note that f R core, thus at least one
clause is removed from cands.

7.4 Experimental Evaluation

We employed several external tools to implement AMUSIC. In partic-
ular, we use the QBF solver CAQE [Rabe and Tentrup, 2015] for solv-
ing the QBF formula MUSInCell, the 2QBF solver CADET [Rabe et al.,
2018] for solving our D@-QBF encoding while computing UMUSC, and
the QBF preprocessor QRATPre+ [Lonsing and Egly, 2019] for pre-

boolean cnf mus counting 127

processing/simplifying our QBF encodings. Moreover, we employ
muser2 [Belov and Marques-Silva, 2012] for a single MUS extrac-
tion while computing UMUSC, a MaxSAT solver UWrMaxSat [Piotrów,
2019] to implement the algorithm by Marques-Silva et al. [Marques-
Silva et al., 2014] for computing the lean kernel of C, and finally, we
use a toolkit called PySAT [Ignatiev et al., 2018] for encoding car-
dinality constraints used in the formula MUSInCell. The tool along
with all benchmarks that we used is available at:

https://github.com/jar-ben/amusic

Objectives As noted earlier, AMUSIC is the first technique to (approx-
imately) count MUSes without explicit enumeration. We demon-
strate the efficacy of our approach via a comparison with two state
of the art techniques for MUS enumeration: MARCO [Liffiton et al.,
2016] and MCSMUS [Bacchus and Katsirelos, 2016]. Within a given
time limit, an MUS enumeration algorithm either identifies the whole
AMUSC, i.e., provides the exact value of |AMUSC|, or identifies just a
subset of AMUSC, i.e., provides an under-approximation of |AMUSC|

with no approximation guarantees.
Our experimental evaluation has two parts. First, we examine

the empirical accuracy of AMUSIC, i.e., the exactness of the provided
MUS counts. Second, we experimentally examine the scalability of
AMUSIC, MARCO, and MCSMUS w.r.t. |AMUSC|.

Benchmarks And Experimental Setup To be able to answer our re-
search questions, we have somewhat contradicting requirements on
the experimental benchmarks. On one hand, to evaluate the pε, δq

guarantees of our algorithm, we need benchmarks for which the
number of contained MUSes is known. On the other hand, to find
out what are the limits of MUS enumeration algorithms, we need
benchmarks where a complete MUS enumeration is practically in-
tractable.

Unfortunately, we are not aware of any publicly available bench-
marks that would fulfill our requirements. A vast majority of papers
on MUS enumeration/extraction use the benchmarks from the MUS
track of the SAT 2011 Competition that we used in Chapters 4, 5 and
6. Although most of these benchmarks are intractable for a complete
MUS enumeration, the number of MUSes in these benchmarks is un-
known. Moreover, these benchmarks contain thousands or even mil-
lions of clauses, and since our approach relies on a ΣP

3 oracle (3QBF
solver), AMUSIC is not able to handle inputs with so many clauses.

Therefore, we generated a custom collection of scalable bench-
marks. The benchmarks mimic requirements on multiprocessing sys-
tems. Assume that we are given a system with two groups (kinds)
of processes, A � ta1, . . . , a|A|u and B � tb1, . . . , b|B|u, such that
|A| ¥ |B|. The processes require resources of the system; however,
the resources are limited. Therefore, there are restrictions on which
processes can be active simultaneously. In particular, we have the
following three types of mutually independent restrictions on the
system:

https://github.com/jar-ben/amusic

128 minimal sets over a monotone predicate: enumeration and counting

0.2
0.4
0.6
0.8

1
1.2
1.4
1.6
1.8

2
es

tim
at

e
/

ex
ac

t
co

un
t

1
22
44
66

1 200 400 600 800 1000

ite
ra

tio
ns

individual benchmarks

Figure 7.2: The number of com-
pleted iterations and the accu-
racy of the final MUS count
estimate for individual bench-
marks.

• The first type of restriction states that “at most k � 1 processes
from the group A can be active simultaneously”, where k ¤ |A|.

• The second type of restriction enforces that “if no process from B
is active then at most k� 1 processes from A can be active, and if
at least one process from B is active then at most l � 1 processes
from A can be active”, where k, l ¤ |A|.

• The third type of restriction includes the second restriction. More-
over, we assume that a process from B can activate a process from
A. In particular, for every bi P B, we assume that when bi is active,
then ai is also active.

We encode the three restrictions via three Boolean CNF formu-
las, R1, R2, R3. The formulas use three sets of variables: X �

tx1, . . . , x|A|u, Y � ty1, . . . , y|B|u, and Z. The sets X and Y repre-
sent the Boolean information about activity of processes from A and
B: ai is active iff xi � 1 and bj is active iff yj � 1. The set Z con-
tains additional auxiliary variables. Moreover, we introduce a for-
mula ACT � p

�
xiPX xiq ^ p

�
yiPY yiq encoding that all processes are

active. For each i P t1, 2, 3u, the conjunction Gi � Ri ^ ACT is un-
satisfiable. Intuitively, every MUS of Gi represents a minimal subset
of processes that need to be active to violate the restriction. The
number of MUSes in G1, G2, and G3 is

�|A|
k

�
,
�|A|

k

�
� |B| �

�|A|
l

�
, and�|A|

k

�
�
°|B|

i�1p
�|B|

i

�
�
�|A|�1

l�i

�
q, respectively. We generated G1, G2, and

G3 for these values: 10 ¤ |A| ¤ 30, 2 ¤ |B| ¤ 6,
Y
|A|
2

]
¤ k ¤

Y
3�|A|

2

]
,

and l � k � 1. In total, we obtained 1353 benchmarks (formulas)
that range in their size from 78 to 361 clauses, use from 40 to 152

variables, and contain from 120 to 1.7� 109 MUSes.
All experiments were run using a time limit of 7200 seconds and

computed on an AMD EPYC 7371 16-Core Processor, 1 TB memory
machine running Debian Linux 4.19.67-2. The values of ε and δ were
set to 0.8 and 0.2, respectively. Complete results are available in the
online appendix3. 3 https://www.fi.muni.cz/~xbendik/

phdThesis/
Accuracy Recall that to compute an estimate c of |AMUSC|, AMUSIC

performs multiple iteration of executing AMUSICCore to get a list S
of multiple estimates of |AMUSC|, and then use the median of S as the

https://www.fi.muni.cz/~xbendik/phdThesis/
https://www.fi.muni.cz/~xbendik/phdThesis/

boolean cnf mus counting 129

1x102

1x103

1x104

1x105

1x106

1x107

1x108

1x109

 200 400 600 800 1000 1200

M
U

S
co

un
t
es

tim
at

e

individual benchmarks sorted by MUS count

AMUSIC
MARCO

MCSMUS

Figure 7.3: Scalability of
AMUSIC, MARCO, and
MCSMUS w.r.t. |AMUSC|.

final estimate c. The more iterations are performed, the higher is the
confidence that c is within the required tolerance ε � 0.8, i.e., that
|AMUSC|

1.8 ¤ c ¤ 1.8 � |AMUSC|. To achieve the confidence 1� δ � 0.8,
66 iterations need to be performed. In case of 157 benchmarks, the
algorithm was not able to finish even a single iteration, and only in
case of 251 benchmarks, the algorithm finished all the 66 iterations.
For the remaining 945 benchmarks, at least some iterations were fin-
ished, and thus at least an estimate with a lower confidence was
determined.

We illustrate the achieved results in Figure 7.2. The figure consists
of two plots. The plot at the bottom of the figure shows the number
of finished iterations (y-axis) for individual benchmarks (x-axis). The
plot at the top of the figure shows how accurate were the MUS count
estimates. In particular, for each benchmark (formula) C, we show
the number c

|AMUSC|
where c is the final estimate (median of estimates

from finished iterations). For benchmarks where all iterations were
completed, it was always the case that the final estimate is within the
required tolerance, although we had only 0.8 theoretical confidence
that it would be the case. Moreover, the achieved estimate never
exceeded a tolerance of 0.1, which is much better than the required
tolerance of 0.8. As for the benchmarks where only some iterations
were completed, there is only a single benchmark where the required
tolerance of 0.8 was exceeded.

Scalability The scalability of AMUSIC, MARCO, and MCSMUS w.r.t.
the number of MUSes (|AMUSC|) is illustrated in Figure 7.3. In partic-
ular, for each benchmark (x-axis), we show in the plot the estimate
of the MUS count that was achieved by the algorithms (y-axis). The
benchmarks are sorted by the exact count of MUSes in the bench-
marks. MARCO and MCSMUS were able to finish the MUS enu-
meration, and thus to provide the count, only for benchmarks that
contained at most 106 and 105 MUSes, respectively. AMUSIC, on the
other hand, was able to provide estimates on the MUS count even for
benchmarks that contained up to 109 MUSes. Moreover, as we have
seen in Figure 7.2, the estimates are very accurate. Only in the case
of 157 benchmarks where AMUSIC finished no iteration, it could not
provide any estimate.

130 minimal sets over a monotone predicate: enumeration and counting

7.5 Summary and Future Work

We presented a probabilistic algorithm, called AMUSIC, for approx-
imate MUS counting that needs to explicitly identify only logarith-
mically many MUSes and yet still provides strong theoretical guar-
antees. The high-level idea is adopted from a model counting algo-
rithm ApproxMC4: we partition the search space into small cells, then
count MUSes in a single cell, and estimate the total count by scaling
the count from the cell. The novelty lies in the low-level algorithmic
parts that are specific for MUSes. Mainly, (1) we propose QBF en-
coding for counting MUSes in a cell, (2) we exploit MUS intersection
to speed-up localization of MUSes, and (3) we utilize MUS union to
reduce the search space significantly. Our experimental evaluation
showed that the scalability of AMUSIC w.r.t. the MUS count outper-
forms the scalability of contemporary enumeration-based counters
by several orders of magnitude. Moreover, the practical accuracy of
AMUSIC is significantly better than what is guaranteed by the theo-
retical guarantees. On the other hand, AMUSIC does not scale very
well w.r.t. the number of clauses in the input formula, since the num-
ber of clauses affects the size of the D@D-QBF formula MUSInCell.

Our work opens up several questions at the intersection of theory
and practice. From a theoretical perspective, the natural question is
to ask if we can design a scalable approximate MUS counting algo-
rithm that makes polynomially many calls to an NP oracle. From
a practical perspective, our work showcases interesting applications
of QBF solvers with native XOR support. Since approximate count-
ing and sampling are known to be inter-reducible, another line of
work would be to investigate the development of an almost-uniform
sampler for MUSes. Another possible direction of future work is to
extend our MUS counting approach to other instances of the general
concept of minimal sets over a monotone predicate.

8
Boolean CNF MSS and MCS Counting

This is the last chapter of the thesis that focuses on analyzing a given
unsatisfiable set C of Boolean clauses. In particular, the problem we
deal with here is counting the number of maximal satisfiable sub-
sets (MSSes) of C. Equivalently, since MSSes are the complements
of the minimal correction subsets (MCSes) of C, we also deal with
the problem of counting MCSes of C. On contrary to the previous
chapter where we focused on approximate counting of minimal unsat-
isfiable subsets (MUSes), here we provide an approach [Bendík and
Meel, 2021] for exact counting of MSSes (and MCSes).

The progress in the development of MSS/MCS identification tech-
niques mirrors the progress in the development of techniques for
identifying minimal unsatisfiable subsets (discussed in Chapter 5).
Since scalable techniques for identification of MSSes appeared only
about a decade and a half ago, the earliest applications primarily fo-
cused on a reduction to the identification of a single MSS or a small
set of MSSes (or MCSes). With recent improvements in the scalabil-
ity of MSS identification techniques, research now started with ex-
amining additional MSS related problems and their corresponding
applications. One of such possible research directions is the problem
of counting MSSes of a given unsatisfiable CNF formula.

Our interest in counting the number of MSSes is motivated by
the rise of Beyond NP paradigm wherein the progress in the design
of efficient techniques for satisfiability paved the way for interest
in the design of efficient techniques for problems such as count-
ing, sampling, optimization, and the like. In particular, the past
two decades have witnessed a proliferation of efficient techniques
for model counting, also denoted as #SAT. It is worth remarking
that initial studies into model counting were motivated by applica-
tions in Bayesian inference but the subsequent availability of effi-
cient model counting techniques have now led to several new ap-
plications ranging from neural network verification [Baluta et al.,
2019], quantified information flow [Biondi et al., 2018], computa-
tional biology [Sashittal and El-Kebir, 2020], network reliability, and
the like. In this regard, we view that given the availability of efficient
techniques for finding an MSS/MCS, it is the right time to pursue

132 minimal sets over a monotone predicate: enumeration and counting

an investigation into the design of efficient counting techniques for
MSSes/MCSes, and the availability of efficient counting techniques
for MCSes/MSSes would lead to a discovery of a diverse set of ap-
plications for MSS counting. So far, we are aware just of a single
application of MSS counting which emerges in the field of diagnosis
where the MSS count serves as a good diagnostic metric [Thimm,
2018].

Similarly to the early years of research into #SAT, the best-known
technique, as of now, to perform the MSS counting is to employ state
of the art techniques for complete MSS enumeration. While MSS
enumeration techniques have improved over the years, the complete
MSS enumeration is often practically intractable since there can be up
to exponentially many MSSes w.r.t. the size of the input constraint
set. In this context, the primary research question that we seek to
investigate is whether we can design MSS counting techniques that do not
necessarily rely on enumeration?. We envision the development of MSS
counting techniques to take advantage of the progress in the model
counting techniques. Given that the problem of finding an MSS is
in FPNPrlogns [Janota and Marques-Silva, 2016] (i.e., harder than the
classical SAT problem), a natural target problem is projected model
counting, a generalization of the classical model counting problem;
the projected model counting is known to be #NP-hard in contrast to
#P-completeness of classical model counting.

The primary contribution of this chapter is an affirmative answer
to the above question. In particular, we design a new algorithmic
framework that uses a novel architecture of a wrapper W and a re-
mainder R such that the desired MSS count corresponding to the
formula C is |W | � |R|. We encode the wrapper W and the remain-
der R via Boolean formulas W and R with suitable projection sets
such that the projected model count of W and R is equal to |W | and
|R| respectively. We present four different strategies for the construc-
tion of wrappers (and their corresponding remainders) and observe
the soundness of a composition of different wrappers. The reduction
to projected model counting allows us to build on recent advances
in the design of efficient component caching-based projected model
counting techniques. To demonstrate the empirical effectiveness of
our approach, we implemented a Python-based prototype and per-
formed a detailed empirical analysis. Out of 1200 benchmarks, the
enumeration-based techniques can solve 353 benchmarks while our
approach can solve 510 benchmarks.

The chapter is organized as follows. Section 8.1 defines the basic
concepts and notation that is specific for this chapter. Subsequently,
Section 8.2 provides an overview of related work. Our novel tech-
nique for counting MSSes is presented in Section 8.3. Finally, Sec-
tion 8.4 discusses results of our experimental evaluation.

boolean cnf mss and mcs counting 133

8.1 Prelimilaries and Problem Formulation

We assume standard definitions and notation for propositional logic
as defined in Section 2. Furthermore, for the sake of this chapter,
we define the following extensions. Given a set A of variables, a
valuation π of A, and a formula F, we write Frπs to denote the
substitution of each variable x in the domain of π by the value πpxq;
furthermore, we apply trivial simplifications, e.g., G _ False � G,
G ^ False � False, etc. Observe that if A � VarspFq, then Frπs is
simplified either to True or to False. We write MF to denote the set of
all models of a formula F. Furthermore, for a set A of variables such
that A � VarspFq, we write MFÓA to denote the projection of MF on
A, and for π P MF, we write πÓA to denote the projection of π on A.
Two formulas F and G are equivalent, denoted F � G, iff MF � MG.
Finally, we write ValspFq to denote the set of all valuations of the
variables VarspFq of F.

Given an unsatisfiable CNF formula C, we write MSSC to denote
the set of all MSSes of C, MCSC to denote the set of all MCSes of C,
SSC to denote the set of all satisfiable subsets of C, and nonMSSC to
denote the set SSCzMSSC of all satisfiable subsets of C that are not
MSSes of C.

In this chapter, we are concerned with the following three prob-
lems.

Name: #MSS
Input: A formula C.
Output: The number |MSSC| of MSSes of C.

Name: #MCS
Input: A formula C.
Output: The number |MCSC| of MCSes of C.

Name: proj-#SAT
Input: A formula C and a set of variables S � VarspCq.
Output: The number MCÓS of models of C projected on S.

Our goal is to solve the #MCS and #MSS problems. Since MCSes are
complements of MSSes, the two problems are equivalent. Thus, in
the following, we focus only on the #MSS problem. Finally, we do not
focus on solving the proj-#SAT problem; instead, we propose several
reductions of #MSS to proj-#SAT.

8.2 Related Work

MSS Counting As far as we know, there is no algorithm dedicated
to counting MSSes. A straightforward approach to determine the
count is to enumerate all the MSSes via an MSS enumeration algo-
rithm, e.g., [Bailey and Stuckey, 2005, Stern et al., 2012, Liffiton et al.,
2016, Marques-Silva et al., 2013a, Bendík et al., 2016b, Narodytska
et al., 2018, Previti et al., 2018, Bendík and Černá, 2020b], and then
simply count the enumerated MSSes. However, the complete MSS

134 minimal sets over a monotone predicate: enumeration and counting

enumeration is often practically intractable, since there can be expo-
nentially many MSSes w.r.t. |C| and thus, the MSSes just cannot be
explicitly enumerated in a reasonable time.

Another possible solution how to count MSSes (MCSes) is based
on the minimal hitting set duality between minimal unsatisfiable
subsets and MCSes of C (Observation 2.6). In particular, one can
first use an MUS enumeration algorithm, e.g., [Bailey and Stuckey,
2005, Stern et al., 2012, Liffiton et al., 2016, Bacchus and Katsirelos,
2015, 2016, Narodytska et al., 2018, Bendík et al., 2018b, Liu and Luo,
2018], to identify all MUSes of C, and then count the number of min-
imal hitting sets of the MUSes. The problem is that there can be
also exponentially many MUSes w.r.t. |C|, which makes the MUS
enumeration also often practically intractable.

Due to the duality between MUSes and MCSes, a tightly con-
nected problem is also the MUS counting which we have studied in
Chapter 7. However, our MUS counting algorithm AMUSIC is only
a probabilistic approximate counter. In contrast, here we focus on
the exact MSS counting. Moreover, although the notions of MUSes
and MSSes share a close relationship, we are unaware of any effi-
cient reduction of the MSS counting problem to the MUS counting
problem.

Model Counting In [Valiant, 1979], it was shown that the problem
of propositional model counting (i.e., proj-#SAT when S � VarspCq)
is #P-complete. The proj-#SAT problem was shown [Durand et al.,
2005] to be #NP-hard. From a practical perspective, the earliest work
on model counting dates to [Birnbaum and Lozinskii, 1999], which
sought to rely on smarter enumeration strategies of partial solutions.
Subsequently, [Bayardo Jr. and Pehoushek, 2000] introduced the no-
tion of component caching, wherein a residual formula after substi-
tuting the current partial assignment can be partitioned into differ-
ent subsets of clauses such that these subsets do not share variables.
Each of these subsets is called a component, and the model count
of the formula is obtained by multiplying the corresponding counts
for each of the components. Therefore, the model count is often
determined by explicitly identifying only a fraction of all models.
Caching scheme is used to avoid recomputation as similar compo-
nents appear in different parts of the search space. Over the past
two decades, there has been a series of algorithmic and system-
driven improvements of component caching-based model counting
techniques [Sang et al., 2004, 2005, Thurley, 2006, Muise et al., 2012,
Sharma et al., 2019]

Over the past 5 years, there has been a concentrated effort on de-
veloping efficient projected model counting techniques [Chakraborty
et al., 2014, Aziz et al., 2015, Chakraborty et al., 2016, Möhle and
Biere, 2018, Sharma et al., 2019, Lagniez and Marquis, 2019]. These
techniques rely on appropriate modifications of standard proposi-
tional model counters (as described above). In this work, we rely on
the state of the art projected model counter GANAK [Sharma et al.,
2019], which was part of the system that won the Projected model

boolean cnf mss and mcs counting 135

counting track at the recently organized model counting competi-
tion1. 1 https://mccompetition.org/

8.3 Counting the Number of MSSes

8.3.1 Basic Idea

Our approach for finding the MSS count |MSSC| is based on a simple
observation: one can count the number |SSC| of all satisfiable subsets
of C, the number |nonMSSC| of satisfiable subsets that are not MSSes,
and then do the math: |MSSC| � |SSC| � |nonMSSC|. In fact, even a
more general observation holds:

Definition 8.1 (wrapper and remainder). A set W of subsets of C is a
wrapper iff MSSC � W � SSC. Futhermore, the remainder of W is the
set R �W X nonMSSC.

Proposition 8.1. Let W be a wrapper and R its remainder. Then |MSSC| �

|W | � |R|.

Proof. SSC � MSSC Y nonMSSC, and MSSC X nonMSSC � H, therefore
MSSC � WznonMSSC � WzR, and since R � W , it holds |MSSC| �

|W | � |R|.

Our approach for counting MSSes consists of the following steps.
First, we find a suitable wrapper W and the corresponding remainder
R. Then, we encode the wrapper W and the corresponding remain-
der R with two formulas, W and R, such that each projected model
of W and R corresponds to an element of W and R, respectively.
Finally, we use a projected model counting tool to count the models
of W and R, and hence to determine |W | and |R| which yields also
the MSS count |MSSC| (Proposition 8.1). In the following section, we
provide details on what is and how to find a suitable wrapper, how to
build the formulas W and R, and what is the projection set.

8.3.2 Wrappers and Remainders

In this section, we gradually present 4 different wrappers W1, . . . ,W4

and their corresponding remainders R1, . . . ,R4. For each wrapper
Wi and its remainder Ri, we also build the corresponding formu-
las Wi and Ri. Subsequently, we show how to combine multiple
wrappers into a single, possibly more efficient, wrapper.

Wrapper W1 Our first wrapper W1 is simply the set SSC of all sat-
isfiable subsets of C, and the corresponding remainder R1 is thus
SSC X nonMSSC � nonMSSC. We build the formula W1 using the
variables VarspCq of C and an additional set of activation variables
A � ta f | f P Cu:

Note that the construction of activation
variables as applied in formula W1 has
been already used in the context of
MSSes/MCSes/MUSes in various stud-
ies. For instance, we have used this
construction in Chapter 7 in the QBF
encoding of the necessity problem (Equa-
tion 7.11), or you can find it in the MUS-
membership encoding by Janota and
Marques-Silva [Janota and Marques-
Silva, 2011].

W1 �
©
fPC

p f _ a f q (8.1)

Intuitively, by setting a variable a f to True, we activate the sub-
clause f in the clause f 1 � p f _ a f q of W1 since satisfying f is then

https://mccompetition.org/

136 minimal sets over a monotone predicate: enumeration and counting

the only way to satisfy f 1. Let us denote by ACpπq the one-to-one
mapping (bijection) between a valuation π of A and the correspond-
ing set of activated clauses of C, i.e., ACpπq � t f P C |πpa f q � Trueu.

Proposition 8.2. For every valuation π of A, π P MW1ÓA iff ACpπq P
W1. Consequently, |MW1ÓA| � |W1|.

Proof. ñ: Let π1 be a model of W1 such that π1ÓA � π. We show
that π1 |ù ACpπq, hence ACpπq is satisfiable and belongs to W1. For
every f P ACpπq, we know that π1 |ù p f _ a f q. Moreover, by the
definition of ACpπq, πpa f q � True � π1pa f q, i.e., π1 �|ù a f , and thus
π1 |ù f .
ð: Let N be an element of W1 and φ its model. We define a valuation
π1 of W1 as π1pxq � φpxq if x P VarspCq, π1pa f q � False if f R N, and
π1pa f q � True if f P N. Observe that ACpπ1ÓAq � N. Furthermore,
π1 |ù W1: every clause p f _ a f q P W1 such that f P N is inherently
satisfied by φ, and every clause p f _ a f q P W1 such that f R N is
satisfied by π1pa f q � False. Hence, π � π1ÓA P MW1ÓA

To build the formula R1 that encodes the remainder R1 � SSC X

nonMSSC, i.e., the set of all satisfiable subsets of C that are not MSSes,
we introduce another set B of activation variables B � tb f | f P Cu.
Similarly as in the case of A, given a valuation π of B, let us by BCpπq
denote the subset t f P C |πpb f q � Trueu of C. By the definition of
an MSS, a satisfiable subset N of C is not an MSS iff there exists a
satisfiable N1 such that N � N1 � C. We use ACpπq and BCpπq to
encode such N and N1, respectively, in R1:

R1 � W1 ^
©
f 1PC1

p f 1 _ b f q ^
©
fPC

pa f Ñ b f q

^
ª
fPC

p a f ^ b f q
(8.2)

Intuitively, the first conjunct W1 encodes that ACpπq is satisfiable,
the second conjunct encodes that BCpπq is satisfiable, and the last
two conjuncts express that ACpπq � BCpπq. Note that since both the
first conjuncts reason about satisfiability of subsets of C, we use in
the second conjunct a primed version C1 of C, i.e. a copy of C where
each literal is substituted by its primed version.2 2 One might note that since ACpπq �

BCpπq, then every model of BCpπq is
also a model of ACpπq, and thus we
in fact do not need to introduce the
primed copy C1 of C. However, in
the following, we compose wrapper W1
with other wrappers, and for this com-
position, we indeed need to introduce
the primed copy.

Proposition 8.3. For every valuation π of A, π P MR1ÓA iff ACpπq P R1.
Consequently, |MR1ÓA| � |R1|.

Proof. ñ: Let π1 be a model of R1 such that π1ÓA � π. Since R1

subsumes W1, π1 |ù W1, and hence by Proposition 8.2 ACpπq is
satisfiable. The set BCpπ1ÓBq is defined and constrained in R1 anal-
ogously to ACpπq, thus BCpπ1ÓBq is also satisfiable. Furthermore,
ACpπq � BCpπ1ÓBq since π1 |ù

�
fPCpa f Ñ b f q ^

�
fPCp a f ^ b f q.

ð: Let N be an element of R1, N1 a satisfiable superset of N, φ a
model of N, and φ1 a model of N1. We build a model π1 of R1 as
π1pxq � φpxq if x P VarspCq, π1pa f q � False if f R N, π1pa f q � True
if f P N, π1pxq � φ1px1q if x1 P VarspC1q, π1pb f q � False if f R N1,

boolean cnf mss and mcs counting 137

and π1pb f q � True if f P N1. Analogously to the proof of Propo-
sition 8.2, we know that π1 |ù W1 ^

�
f 1PC1p f 1 _ b f q. As for the

remaining part of R1, since N � N1, we have that π1pa f q � True im-
plies π1pb f q � True for every f P C, and that there is at least one f P C
such that π1pa f q � False and π1pb f q � True.

Based on the above observations, we can use a projected model
counter to determine the cardinalities |W1| and |R1|, and then em-
ploy Proposition 8.1 to deduce the MSS count. Thus, we are done...
or are we not? The problem is the complexity (and practical tractabil-
ity) of counting the projected models of W1 and R1. In general, there
are two main criteria that affect the practical efficiency of the pro-
jected counting. One criterion is the cardinality of the projection set,
which is in the case of W1 |A| � |C|. The other criterion is the num-
ber of the models, i.e., |W1|, which can be exponential w.r.t. |C| since
there are 2|C| subsets of C and all of them (excluding the whole C)
can be satisfiable. In the following, we propose three other wrappers
(and corresponding remainders) that tend to optimize these two cri-
teria by providing a better description of MSSes. All formulas that
encode the following wrappers and their remainders use the same
variables as in the case of W1 and R1, i.e., VarspCqYVarspC1qYAYB.
We also use the notation ACpπq and BCpπq to map valuations of A
and B, respectively, to subsets of C.

Wrapper W2 Our second wrapper, W2, exploits the intersection IMSSC

of all MSSes of C. Clearly, for every MSS N P MSSC it holds that
IMSSC � N. Thus, we could define the next wrapper as the set of all
satisfiable subsets of C that are supersets of IMSSC. Unfortunately,
computing the intersection can be very expensive (see below), thus,
we exploit a more general observation:

Observation 8.1. For every under-approximation I of IMSSC, i.e., I �
IMSSC, and every MSS N P MSSC, it holds that I � N.

Given an under-approximation I of IMSSC, we define the second
wrapper as W2 � tN P SSC | I � Nu. The formulas W2 and R2 that
encode W2 and R2, respectively, are defined as follows:

W2 � W1 ^
©
fPI

a f (8.3)

R2 � W2 ^R1 (8.4)

Proposition 8.4. For every valuation π of A, π P MW2ÓA iff ACpπq P
W2. Consequently, |MW2ÓA| � |W2|.

Proof. ñ: W2 subsumes W1, thus for every π P MW2ÓA the set
ACpπq is satisfiable (Proposition 8.2), and since f P ACpπq iff π |ù a f ,�

fPI a f ensures that I � ACpπq.
ð: Given N P W2 and a model φ of N, we build a valuation π1

of W2 as π1pxq � φpxq if x P VarspCq, π1pa f q � False if f R N,

138 minimal sets over a monotone predicate: enumeration and counting

and π1pa f q � True if f P N. Similarly as in the proof of Propo-
sition 8.2, observe that ACpπ1ÓAq � N and that π1 |ù W2, thus
π � π1ÓA P MW2ÓA.

Proposition 8.5. For every valuation π of A, π P MR2ÓA iff ACpπq P R2.
Consequently, |MR2ÓA| � |R2|.

Proof. MR2ÓA � MpW2^R1qÓA � MW2ÓA X MR1ÓA � tπ |ACpπq P
W2u X tπ | ACpπq P R1u � tπ |ACpπq P W2 XR1u � tπ |ACpπq P
R2u. The other direction holds since AC is a one-to-one mapping
(bijection).

Observe that by enforcing the variables ta f | f P Iu to be set to
True, we effectively reduce the size of the projection set A since
all models of W2 (and R2) agree on the assignment to these vari-
ables. In other words, |MW2ÓA| � |MW2ÓpAzta f | fPIuq| (and |MR2ÓA| �

|MR2ÓpAzta f | fPIuq|). Based on our practical experience, the intersec-
tion IMSSC is often relatively large, i.e., I can be also relatively large,
and thus we can significantly reduce the projection set.

The remaining question is how to compute either exactly IMSSC

or at least its under-approximation I. We are not aware of any
work that would be dedicated to computing the intersection IMSSC

of all MSSes of C. Yet, as shown in [Kullmann, 2000a], it holds that
IMSSC � CzUMUSC where UMUSC is the union of all minimal unsatisfi-
able subsets (MUSes) of C. Recall that we have already discussed
the computation of UMUSC in the previous chapter (Section 7.3.4).
Based on a recent study [Mencía et al., 2019], computing UMUSC,
and hence also IMSSC, is often practically intractable even for rela-
tively small formulas. Yet, we can relatively cheaply compute a good
over-approximation A of UMUSC whose complement, CzA, is thus
an under-approximation of IMSSC. In the previous chapter, we pre-
sented an algorithm for computing an over-approximation of A: we
first computed the lean kernel K of C to get an over-approximation
of UMUSC, and then we gradually refined the over-approximation by
repeatedly solving a 2QBF formula. Here, we use only the lean ker-
nel, since solving the 2QBF formula is too expensive in this case. In
particular, we employ an approach from [Marques-Silva et al., 2014]
to compute the lean kernel K and then use I � CzK to build the
wrapper W2.

Similarly as we used the intersection IMSSC, one might think of
exploiting the union UMSSC of all MSSes; clearly, every MSS of C is
contained in UMSSC. Thus, at first glance, it makes sense to build a
wrapper that contains all satisfiable subsets of C that are subsets of
UMSSC. Yet, we observe that UMSSC � C and thus the use of the union
would not bring any benefit compared to W1:

Proposition 8.6. For every formula C (with no empty clause) and the
union UMSSC of all MSSes of C, it holds that C � UMSSC.

Proof. By contradiction, assume a clause f P C that is not contained
in any MSS of C. Since f is non-empty, it is necessarily satisfiable,

boolean cnf mss and mcs counting 139

and hence either t f u is an MSS of C or there exists an MSS N of C
such that N � t f u.

Wrapper W3 Our next wrapper, W3, is based on the following char-
acterization of MSSes:

Proposition 8.7. For every MSS N of C there exists a valuation φ of
VarspCq such that φ |ù N and for every f P CzN it holds that φ �|ù f .

Proof. N is satisfiable, thus it has a model. For every model φ of N,
if φ |ù f for some f P CzN, then φ |ù N Y t f u which contradicts that
N is an MSS.

The corresponding wrapper for the property stated in Proposi-
ton 8.7 is W3 � tN P SSC | Dφ P ValspCq.φ |ù N ^

�
fPCzN f u. The

formulas W3 and R3 encoding W3 and R3, respectively, are the fol-
lowing:

W3 � W1 ^
©
fPC

p a f Ñ f q (8.5)

R3 � W3 ^R1 (8.6)

Proposition 8.8. For every valuation π of A, π P MW3ÓA iff ACpπq P
W3. Consequently, |MW3ÓA| � |W3|.

Proof. ñ: W3 subsumes W1, thus for every model π1 of W3 such
that π � π1ÓA it holds that π1 |ù ACpπq (Proposition 8.2). Fur-
thermore, by the definition of AC, f R ACpπq iff π |ù a f (i.e.,
πpa f q � False). Thus, the clauses

�
fPCp a f Ñ f q of W3 ensure

that for all f P CzACpπq it holds that π1 �|ù f . Hence, π1 is the model
φ from the definition of W3.
ð: Given N PW3 and a model φ of N^

�
fPCzN f (by the definition

of W3), we build a valuation π1 of W3 as π1pxq � φpxq if x P VarspCq,
π1pa f q � False if f R N, and π1pa f q � True if f P N. Similarly as
in the proof of Proposition 8.2, observe that ACpπ1ÓAq � N and that
π1 |ù W3, thus π � π1ÓA P MW3ÓA.

Proposition 8.9. For every valuation π of A, π P MR3ÓA iff ACpπq P R3.
Consequently, |MR3ÓA| � |R3|.

Proof. MR3ÓA � MpW3^R1qÓA � MW3ÓA X MR1ÓA � tπ |ACpπq P
W3u X tπ | ACpπq P R1u � tπ |ACpπq P W3 XR1u � tπ |ACpπq P
R3u. The other direction holds since AC is a one-to-one mapping
(bijection).

Wrapper W4 Another wrapper, W4, is based on the following prop-
erty of MSSes:

Proposition 8.10. Let N be a maximal satisfiable subset of C and φ a
valuation of VarspCq. It holds that if φ |ù N, then φ |ù

�
fPCzN P, where

P �
�

lP f
�

gPtgPN | lPgu
�

kPgzt lu k.

140 minimal sets over a monotone predicate: enumeration and counting

Proof. By contradiction, assume a valuation φ such that φ |ù N and
φ �|ù

�
fPCzN P. Hence, there exists f P CzN and l P f such that

φ �|ù
�

gPtgPN | lPgu
�

kPgzt lu k. In other words, for every clause
g P G � tg P N | l P gu there is a literal k P g, k � l, with φ |ù k.
Now, assume that we turn φ into a valuation φ1 by only flipping the
assignment to l, i.e., φ1 |ù l. Clearly, φ1 |ù f since l P f . Furthermore,
φ1 |ù NzG since these clauses do not contain l and thus the change
of the assignment to l does not affect them. Finally, φ1 |ù G since
every g P G contains a literal k, k � l, with φ |ù k (and φ1 agrees
with φ on k). Hence, N Y t f u is satisfiable, which contradicts that N
is an MSS.

Informally, for every clause f P CzN and every literal l of the
clause, there is a clause g P N that forces l to be falsified. If there
would be l that is not forced to be falsified, then the model φ can
be relaxed to a model φ1 that would satisfy N Y t f u (which is not
possible since N is an MSS). Unfortunately, the proposition reasons
about all models of an MSS (i.e., a universal property), which is
expensive to encode with a propositional formula. Yet, since ev-
ery MSS has at least a single model, we can relatively cheaply en-
code a weaker, existential, variant of Proposition 8.10. We define
W4 as W4 � tN P SSC | Dφ P ValspCq.φ |ù N ^

�
fPCzN Pu, where

P �
�

lP f
�

gPtgPN | lPgu
�

kPgzt lu k. We encode W4 and its re-
minder R4 via W4 and R4 as follows:

W4 � W1 ^
©
fPC

 a f Ñ P1, where

P1 �
©
lP f

ª
gPtgPC | lPgu

pag ^
©

kPgzt lu

 kq
(8.7)

R4 � W4 ^R1 (8.8)

Proposition 8.11. For every valuation π of A, π P MW4ÓA iff ACpπq P
W4. Consequently, |MW4ÓA| � |W4|.

Proof. ñ: Let π1 be a model of W4 such that π � π1ÓA. We show that
π1 and ACpπq comply with the conditions on φ and N, respectively,
from the definition of W4. W4 subsumes W1, thus π1 |ù ACpπq
(Proposition 8.2). Furthermore, since π1 |ù W4 and π � π1ÓA, it
holds that π1 |ù W4rπs. Finally, as f P ACpπq iff π |ù a f , observe that
W4rπs �

�
fPCzACpπq

�
lP f
�

gPtgPACpπq | lPgu
�

kPgzt lu k (which is
the condition on φ).
ð: Given N P W4 and a valuation φ such that φ |ù N ^

�
fPCzN P

(as in the definition of W4) , we build a model π1 of W4 same as we
did in the proof of Proposition 8.2, i.e., π1pxq � φpxq if x P VarspCq,
π1pa f q � False if f R N, and π1pa f q � True if f P N. Like in the proof
of Proposition 8.2, it holds that ACpπ1ÓAq � N and π1 |ù W1. As for
the rest of W4, it generally holds that π1 |ù p

�
fPC a f Ñ P1q iff π1 |ù

p
�

fPC a f Ñ P1qrπ1ÓAs. Furthermore, p
�

fPC a f Ñ P1qrπ1ÓAs �

boolean cnf mss and mcs counting 141

�
fPCzN P, since π1ÓA |ù a f iff f P N. Finally, φ |ù

�
fPCzN P and

π1 agrees with φ on Varsp
�

fPCzN Pq, hence π1 |ù
�

fPCzN P.

Proposition 8.12. For every valuation π of A, π P MR4ÓA iff ACpπq P
R4. Consequently, |MR4ÓA| � |R4|.

Proof. MR4ÓA � MpW4^R1qÓA � MW4ÓA X MR1ÓA � tπ |ACpπq P
W4u X tπ | ACpπq P R1u � tπ |ACpπq P W4 XR1u � tπ |ACpπq P
R4u. The other direction holds since AC is a one-to-one mapping
(bijection).

8.3.3 Combining The Wrappers

Proposition 8.13. For every two wrappers Wi,Wj P tW1, . . . ,W4u and
their remainders Ri, Rj, it holds:

1. Wi XWj is a wrapper, and Ri XRj is its remainder.

2. For every valuation π of A, π P MpWi^WjqÓA iff ACpπq P Wi XWj.
Consequently, |MpWi^WjqÓA| � |Wi XWj|.

3. For every valuation π of A, π P MpRi^RjqÓA iff ACpπq P Ri XRj.
Consequently, |MpRi^RjqÓA| � |Ri XRj|.

Proof.

1. By Definition 8.1, a set W is a wrapper iff MSSC � W � SSC,
and the remainder of W is R � W X nonMSSC. Wi and Wj are
wrappers, thus MSSC � Wi,Wj � SSC, and hence MSSC � Wi X

Wj � SSC. Furthermore, Ri � Wi X nonMSSC and Rj � Wj X

nonMSSC, hence Ri XRj �Wi XWj X nonMSSC.

2. By Propositions 8.2, 8.4, 8.8 and 8.11, MpWi^WjqÓA � MWiÓA X

MWjÓA � tπ |ACpπq P Wiu X tπ | ACpπq P Wju � tπ |ACpπq P
Wi XWju. The other direction holds since AC is a one-to-one
mapping (bijection).

3. By Propositions 8.3, 8.5, 8.9 and 8.12, MpRi^RjqÓA � MRiÓA X

MRjÓA � tπ |ACpπq P Riu X tπ | ACpπq P Rju � tπ |ACpπq P
Ri XRju. The other direction holds since AC is a one-to-one map-
ping (bijection).

Note that all the formulas W2, W3 and W4 use as a subformula
W1. Similarly, all the formulas R2, R3 and R4 use as a subformula
R1. Thus, if we combine two wrappers, we duplicate some clauses
in the formulas. In our implementation, we first remove all dupli-
cated clauses from a formula before we pass it to a model counting
tool. This simplification is sound as it does not reduce the number
of models of the formula.

142 minimal sets over a monotone predicate: enumeration and counting

On Choice of Projected Model Counting

We remark on the choice of reduction of MSS counting to projected
model counting. One might wonder whether we could have reduced
to the classical problem of model counting. In this context, note that
the classical model counting is #P-complete and checking whether
an assignment satisfies a CNF formula is in P. In contrast, checking
whether a given set of clauses is an MSS is in DP, and therefore, it is
expected to rely on a problem that is perhaps harder than classical
model counting from the complexity perspective. Therefore, pro-
jected model counting, which is in #NP-hard, is a good choice given
its hardness and the recent development of efficient techniques.

8.4 Experimental Evaluation

We have implemented our approach for solving the #MSS problem in
a python-based tool. To count the number of projected models of the
wrappers, we use the model counter GANAK [Sharma et al., 2019].
Furthermore, we employ the MaxSAT solver UWrMaxSat [Piotrów,
2019] as a backed while computing the under-approximation I of the
intersection of MSSes in the case of the wrapper W2. Our tool is
publicly available at:

https://github.com/jar-ben/MSSCounting

In this section, we experimentally compare the four wrappers,
W1, . . . ,W4, and their combinations for the task of determining the
MSS count of a given formula. Note that the wrapper W1 is by the
definition subsumed by the remaining three wrappers. Therefore,
there are only 8 possible combined wrappers (according to Propo-
sition 8.13) that make sense: W1 � W1, W2 � W2, W3 � W3,
W4 � W4, W23 � W2 XW3, W24 � W2 XW4, W34 � W3 XW4,
W234 � W2 XW3 XW4. At first glance, the wrapper W234 that
combines all the base wrappers should be the most suitable one
since it provides the most accurate description of MSSes. However,
the Boolean formula that describes this wrapper is also the largest
one in the number of clauses, and thus it might be hard to deal
with for the model counter. Therefore, it makes sense to evaluate
all the 8 combinations. Moreover, we compare our wrapper-based
approach for counting MSSes with the contemporary MSS count-
ing approach: complete MSS enumeration via an MSS enumeration
tool. In particular, we evaluate two contemporary MSS enumeration
tools: FLINT [Narodytska et al., 2018]3, and RIME [Bendík and Černá, 3 The implementation of FLINT was

kindly provided to us by its author,
Nina Narodytska.

2020b]4. Thus, in total, we compare ten tools (RIME, FLINT, and our

4 https://github.com/jar-ben/rime
approach using one of the eight wrappers).

We use three comparison criteria: 1) the number of benchmarks
for which the tools provide the MSS count, 2) the time to provide the
MSS count, and 3) the scalability of the tools w.r.t. the MSS count.

We used a collection of 1200 Boolean CNF formulas that were
recently used in prior MUS literature [Liu and Luo, 2018, Luo and
Liu, 2019]5. The benchmarks contain from 100 to 1000 clauses, use 5 https://github.com/luojie-sklsde/

MUS_Random_Benchmarks

https://github.com/jar-ben/MSSCounting
https://github.com/jar-ben/rime
https://github.com/luojie-sklsde/MUS_Random_Benchmarks
https://github.com/luojie-sklsde/MUS_Random_Benchmarks

boolean cnf mss and mcs counting 143

 0

 500

 1000

 1500

 2000

 2500

 3000

 3500

 100 200 300 400 500 600

el
ap

se
d

tim
e

in
 s

ec
on

ds

solved benchmarks

FLINT
RIME
W234
W23
W2

W24
W4

W34

Figure 8.1: The number of
solved benchmarks in time.

from 50 to 996 variables, and have from 2 to at least 4.74�1012 MSSes
(the highest MSS count revealed in our evaluation).

All experiments were run using a time limit of 3600 seconds (1
hour) and computed on an AMD EPYC 7371 16-Core Processor, 1 TB
memory machine running Debian Linux 4.19.67-2. Complete results
are available in the online appendix6. 6 https://www.fi.muni.cz/~xbendik/

phdThesis/

8.4.1 Number of Completed Benchmarks

We now examine the number of benchmarks for which the evaluated
tools determined the MSS count; we simply say that the tools solved
the benchmarks. Only 515 of the 1200 benchmarks were solved by
at least one of the tools. Furthermore, 353 benchmarks were solved
either by FLINT or by RIME, and 510 benchmarks were solved using
one of our wrapper-based tools.

The cactus plot in Figure 8.1 shows for each tool the number of
solved benchmarks and the time to solve the benchmarks. In particu-
lar, a point with coordinates rx, ysmeans that there are x benchmarks
for which the corresponding tool provided the MSS count within the
first y seconds of the computation. There are only 327 and 347 bench-
marks where FLINT and RIME provided the MSS count, respectively.
As for our approach, the best result was achieved by the wrappers
W234 and W24 which both solved 506 benchmarks, i.e., there is an
incredible improvement of 46 percent over the best MSS enumera-
tor RIME. W23 solved 471 benchmarks, which is also a solid result.
On the other hand, W2, W4, and W34 solved only 209, 195, and 197

benchmarks, respectively. W1 and W3 did not solve even a single
benchmark.

FLINT RIME W234 W24 W23

FLINT | 6;26 2;181 2;181 2;146

RIME 26;6 | 5;164 5;164 5;129

W234 181;2 164;5 | 4;4 35;0
W24 181;2 164;5 4;4 | 38;3
W23 146;2 129;5 0;35 3;38 |

Table 8.1: Number of bench-
marks where a tool solved
more;fewer benchmarks than
the other tools.

https://www.fi.muni.cz/~xbendik/phdThesis/
https://www.fi.muni.cz/~xbendik/phdThesis/

144 minimal sets over a monotone predicate: enumeration and counting

 1

 100

 10000

 1x106

 1x108

 1x1010

 1x1012

 0 100 200 300 400 500 600

M
SS

 C
ou

nt

individual benchmarks

W234
RIME

Figure 8.2: Scalability w.r.t. the
MSS count.

There are 4 benchmarks that were solved by W234, but not by
W24, and vice versa. Table 8.1 pair-wise compares FLINT, RIME,
and the three best wrappers, W234, W24, and W23, w.r.t. this crite-
rion. Each cell contains two numbers, k; l, expressing that there are k
benchmarks that were solved by the tool labeling the row but not by
the tool labeling the column, and vice versa for l. There are only 2

and 5 benchmarks that were solved by FLINT and RIME, respectively,
and that were not solved by any of our wrappers.

8.4.2 Scalability W.R.T. the MSS Count

An MSS enumerator (e.g., FLINT or RIME) has to explicitly enumer-
ate all MSSes to obtain the MSS count. Consequently, if the MSS
count is large, the complete enumeration naturally becomes practi-
cally intractable (w.r.t. a reasonable time limit). On the other hand,
our approach reduces the MSS counting to model counting, and it
is often the case that a model counter needs to explicitly identify
only a fraction of the models. Consequently, our approach should
hypothetically scale much better w.r.t. the MSS count.

To prove our hypothesis, we compare the best MSS enumeration
tool, RIME, with our best wrapper, W234. The plot in Figure 8.2
shows on the x-axis the benchmarks that were completed by at least
one of the two tools and on the y-axis the MSS count of the bench-
marks. The benchmarks are sorted by the MSS count. In the case of
RIME, the points in the plot show the number of enumerated MSSes
within the given time limit, i.e., it is either the exact MSS count or its
under-approximation. RIME was able to solve only benchmarks with
at most 106 MSSes. On the other hand, W234 solved even bench-
marks that contain 1012 MSSes, i.e., it scales much better. Note that
we show in the plot also the 5 benchmarks that were solved by RIME

but not by W234; these are illustrated as the 5 points on the x-axis.

8.5 Summary and Future Work

Motivated by the progress in model counting, we initiate the study
of counting the number of MSSes of a given formula. Our novel

boolean cnf mss and mcs counting 145

algorithmic framework relies on the notions of wrappers and their
corresponding remainders. We show that wrappers and remainders
compose, and the computation of the sizes of wrappers and remain-
ders reduces to the projected model counting. The availability of an
efficient projected model counter, GANAK, allowed our MSS count-
ing approach to scale, in terms of the MSS count, significantly better
than alternative approaches based on the MSS enumeration.

As for the future work, we would like to address also a better
scaling of our approach w.r.t. the number of clauses in the input
instance. Whereas we are currently able to handle instances with
hundreds of clauses, instances with high thousands or even millions
of clauses are still out of our reach. In this context, a promising
challenge would be to handle the widely used dataset of 291 CNF
formulas from the MUS track of the SAT Competition 2011. A vast
majority of benchmarks from this set is not tractable for contempo-
rary MSS enumeration tools due to a large number of MSSes, and
it is also not tractable for our approach owing to a large number of
clauses in the benchmarks, which in turn leads to an increase in the
number of variables for projected model counting queries. An inter-
esting direction to address this scalability challenge is to investigate
whether a component caching-based scheme operating natively over
the space of MSSes, i.e., avoiding the reduction to model counting,
can lead to a better runtime efficiency.

Part IV

Minimal Inductive Validity
Cores

9
Minimal Inductive Validity Cores

In this chapter, we focus on another instance of minimal sets over a
monotone predicate called Minimal Inductive Validity Cores (MIVCs),
which find application in the area of symbolic model checking. In
particular, we present an algorithm for enumeration of MIVCs, called
GROW-SHRINK [Bendík et al., 2018c].

Symbolic model checking using induction-based techniques such
as IC3/PDR [Eén et al., 2011], k-induction [Sheeran et al., 2000], and
k-liveness [Claessen and Sörensson, 2012] can be used to determine
whether properties hold of complex finite or infinite-state systems.
Such tools are popular both because they are highly automated (of-
ten requiring no user interaction other than the specification of the
model and desired properties), and also because, in the event of a
violation, the tool provides a counterexample demonstrating a situa-
tion in which the property fails to hold. These counterexamples can
be used both to illustrate subtle errors in complex hardware and soft-
ware designs [Murugesan et al., 2013, Miller et al., 2010] and to sup-
port automated test case generation [Whalen et al., 2013, You et al.,
2015].

If a property is proved, however, most model checking tools do not
provide additional information. This can lead to situations in which
developers have an unwarranted level of confidence in the behavior
of the system. Issues such as vacuity [Kupferman and Vardi, 2003],
incorrect environmental assumptions [Whalen et al., 2007], and er-
rors either in English language requirements or formalization can all
lead to failures of “proved” systems. Thus, even if proofs are estab-
lished, one must approach verification with skepticism.

A few years ago, proof cores1 have been proposed as a mechanism 1 https://www.cadence.com/

to determine which elements of a model are used when constructing
a proof. This idea is formalized by Ghassabani et al. for inductive
model checkers as Inductive Validity Cores (IVCs) [Ghassabani et al.,
2016]. IVCs offer proof explanation as to why a property is satisfied
by a model in a formal and human-understandable way. The idea
is to lift Boolean unsat cores [Zhang and Malik, 2003] to the level of
sequential model checking algorithms using induction. Informally,
if a model is viewed as a conjunction of constraints, a minimal IVC
(MIVC) is a set of constraints that is sufficient to construct a proof

https://www.cadence.com/

150 minimal sets over a monotone predicate: enumeration and counting

such that if any constraint is removed, the property is no longer
valid. Depending on the model and property to be analyzed, there
are many possible MIVCs, and there is often substantial diversity
between the IVCs used for proof. In recent studies [Ghassabani et al.,
2016, Murugesan et al., 2016, Ghassabani et al., 2017a,b], there have
been explored several different uses of IVCs, including:
Traceability: Minimal inductive validity cores can provide accurate
traceability matrices with no user effort. Given multiple MIVCs, rich
traceability matrices [Murugesan et al., 2016] can be automatically
constructed that provide additional insight about required vs. optional
design elements.
Vacuity detection: Syntactic vacuity detection (checking whether all
subformulae within a property are necessary for its validity) has
been well studied [Kupferman and Vardi, 2003]. MIVCs allow a gen-
eralized notion of vacuity that can indicate weak or mis-specified
properties even when a property is syntactically non-vacuous.
Coverage analysis: Coverage analysis provides a metric for testing
whether a set of properties is adequate for the model. Several dif-
ferent notions of coverage have been proposed [Chockler et al., 2006,
Kupferman et al., 2008], but these tend to be very expensive to com-
pute. MIVCs provide an inexpensive coverage metric by determining
the percentage of model atoms necessary for proofs of all properties.
Impact Analysis: Given a single (or for more accurate results, all)
MIVC, it is possible to determine which requirements may be fal-
sified by changes to the model. This analysis allows for selective
regression verification of tests and proofs: if there are alternate proof
paths that do not require the modified portions of the model, then
the requirement does not need to be re-verified.
Design Optimization: A practical way of calculating all MIVCs al-
lows synthesis tools to find a minimum set of design elements (opti-
mal implementation) for a certain behavior. Such optimizations can
be performed at different levels of synthesis.

To be useful for these tasks, the generation process must be ef-
ficient and the generated IVC must be accurate and precise (that is,
sound and minimal). In their previous work, Ghassabani et al. devel-
oped an efficient offline algorithm [Ghassabani et al., 2017b] for find-
ing all minimal IVCs based on the MARCO algorithm for MUSes [Lif-
fiton et al., 2016]. The algorithm is considered offline because it dur-
ing its computation produces both minimal and non-minimal IVCs,
however, the information about the minimality of the provided so-
lutions is not determined until all MIVCs have been computed. In
cases in which models contain many MIVCs, this approach can be
impractically expensive or simply not terminate within a reasonable
time limit.

In this chapter, we present our algorithm for online MIVC enu-
meration, called GROW-SHRINK [Bendík et al., 2018c]. With this
algorithm, solutions are produced incrementally, and each solution
produced is guaranteed to be minimal. Therefore, the algorithm pro-
duces at least some MIVCs even in the case of models for which a

minimal inductive validity cores 151

complete MIVC enumeration is intractable. Moreover, the proposed
algorithm is often more efficient then the baseline offline algorithm
also in the case of tractable models. We demonstrate this via an ex-
perimental evaluation.

The rest of the chapter is organized as follows. In Section 9.1 we
define all the necessary notions. Section 9.2 summarizes the existing
techniques. In Section 9.3 we present our novel algorithm. Section 9.5
provides an example execution of our algorithm. Finally, sections
9.4 and 9.6 cover implementation details and present experimental
results.

9.1 Preliminaries

A transition system pI, Tq over a state space S consists of an initial
state predicate I : S Ñ tTrue, Falseu and a transition step predicate
T : S � S Ñ tTrue, Falseu. The notion of reachability for pI, Tq is
defined as the smallest predicate R : S Ñ tTrue, Falseu satisfying the
following formulae:

@s P S : Ipsq Ñ Rpsq

@s, s1 P S : Rpsq ^ Tps, s1q Ñ Rps1q

A safety property P : S Ñ tTrue, Falseu holds on a transition sys-
tem pI, Tq iff it holds on all reachable states, i.e., @s P S : Rpsq Ñ Ppsq.
We denote this by pI, Tq $ P. We assume the transiton step predi-
cate T is equivalent to a conjunction t1 ^ � � � ^ tn of transition step
predicates t1, . . . , tn, called top level conjuncts2. In such case, T can 2 Note that this is usually the case when

pI, Tq represents a synchronous system,
i.e., a system where all components
(variables) of the system change state
synchronously during each tick of the
system clock. The individual top-level
conjuncts constraint the behavior of in-
dividual components (variables) of the
system.

be identified with the set of its top level conjuncts tt1, . . . , tnu. By
further abuse of notation, we write Tzttu to denote the removal of a
top level conjunct t from T, and T Y ttu to denote the addition of a
top level conjunct t to T.

Definition 9.1 (IVC, MIVC). A set of conjuncts U � T is an In-
ductive Validity Core (IVC) for pI, Tq $ P iff pI, Uq $ P. More-
over, U is a Minimal IVC (MIVC) for pI, Tq $ P iff pI, Uq $ P and
@t P U : pI, Uzttuq & P.

Definition 9.2 (inadequacy, MIS). A set of conjuncts U � T is an in-
adequate set for pI, Tq $ P iff pI, Uq & P. Especially, U � T is a
Maximal Inadequate Set (MIS) for pI, Tq $ P iff U is inadequate and
@t P pTzUq : pI, U Y ttuq $ P.

Inadequate sets are duals to inductive validity cores. Each U � T
is either inadequate set or an inductive validity core. In order to
unify the notation, we use notation inadequate and adequate. Note
that especially minimal inductive validity cores can be thus called
minimal adequate sets. Furthermore, since we use pI, Tq to denote
the input transition system and P to denote the safety property of
interest throughout the whole chapter, we slightly abuse the notation
and simply write that “a subset U of T is an MIVC” instead of the
full term “a subset U of T is an MIVC for pI, Tq $ P”. Similarly, we

152 minimal sets over a monotone predicate: enumeration and counting

simply write that a subset U of T “is adequate/inadequate” instead
of “is adequate/inadequate for pI, Tq $ P”.

Proposition 9.1 (Monotonicity). If a set of conjuncts U � T is adequate
then all its supersets are adequate as well:

@U1 � U2 � T : pI, U1q $ P ñ pI, U2q $ P.

Symmetrically, if U � T is inadequate then all its subsets are inadequate as
well:

@U1 � U2 � T : pI, U2q & P ñ pI, U1q & P.

Proof. If U1 � U2 then reachable states of pI, U2q form a subset of the
reachable states of pI, U1q.

Observation 9.1. Minimal Inductive Validity Cores (MIVCs) are an in-
stance of Minimal Sets over a Monotone Predicate (MSMPs) as defined in
Section 2.2. In particular, the set C of elements is the set T of predicates
and for every subset N of T the predicate P is defined as PpNq � 1 iff N is
adequate. The monotonicity of P is witnessed in Proposition 9.1. Hence, P1-
minimal subsets correspond to MIVCs and P0-maximal subsets correspond
to MISes.

Since MIVCs are instance of MSMPs, we can adopt the concept
of unexplored subsets as defined in Section 2.3.1, including the def-
initions of maximal and minimal unexplored subsets. We keep the
notation of Unexplored to denote the set of all unexplored subsets,
and we employ the symbolic technique based on the formula map�^
map� to maintain the set Unexplored (described Section 2.3.2). We
also adopt the concept of critical elements, however, here we call them
critical predicates. In particular, a predicate t P N is critical for an
adequate N iff Nzttu is inadequate.

Finally, we adopt the terminology of shrinking and growing. In
particular, a shrinking procedure shrinks a given adequate subset N
of T into an MIVC. Similarly, a growing procedure grows a given
inadequate subset M of T into an MIS M1 such that M � M1 � T.

Example 9.1. We adopt an example from [Ghassabani et al., 2017b] to
illustrate the concept of MIVCs on a simple synchronous system from the
avionics domain. An Altitude Switch (ASW) is a control device that turns
power on and off to the Device of Interest (DOI) based on the altitude of the
aircraft. When the aircraft descends below a threshold value, ASW turns
the power to DOI on, and when the aircraft ascends over the threshold plus
some hysteresis factor, ASW again turns the power to DOI off.

In Algorithm 9.1, we show an implementation of ASW containing two
altimeters written in the Lustre language [Halbwachs et al., 1991] (a lan-
guage for modeling synchronous systems). If an altimeter is below the
THRESHOLD value, the DOI is turned on; otherwise, if the system is in-
hibited or both the altimeters are above the threshold value plus a hysteresis
factor T_HYST, then the DOI is turned off; if neither of the two conditions
holds, then DOI is initially turned off and thereafter it retains its previous
value. Namely, “(false � ¡ pre(doi_on))” in equation (7) describes an

minimal inductive validity cores 153

node asw (alt1, alt2: int) returns (doi_on: bool);
var

a1_below, a2_below, a1_above, a2_above,
one_below, both_above, on_p: bool;

let
(1) a1_below = (alt1 THRESHOLD);
(2) a2_below = (alt2 THRESHOLD);
(3) a1_above = (alt1 ¥ T_HYST);
(4) a2_above = (alt2 ¥ T_HYST);
(5) one_below = a1_below or a2_below;
(6) both_above = a1_above and a2_above;
(7) doi_on = if one_below then true

else if both_above then false
else (false � ¡ pre(doi_on));

(8) on_p = ((alt1 THRESHOLD) and
(alt2 THRESHOLD)) ñ doi_on;

tel;

Algorithm 9.1: Lustre implementation of ASW from Example 9.1.

initialization of a register: in the first step (tick of the system clock), the
expression is false, and thereafter it retains the previous value of doi_on.
The property of interest on_p, defined in equation (8), expresses that if both
altimeters are under the threshold, then the DOI is turned on. This property
holds in the model and it can be proved e.g. via a k-induction verifier such
as JKind [Gacek et al., 2018].

If we encode the Lustre program as a transition system, then each of the
eight equations of the program corresponds to a transition step predicate;
for simplicity, we name the predicates after the eight variables, i.e., T �

ta1_below, a2_below, a1_above, a2_above, one_below, both_above,
doi_on, on_pu. There are two MIVCs for the transition system and the
property of interest on_p: ta1_below, one_below, doi_on, on_pu and
ta2_below, one_below, doi_on, on_pu. This is because in the implemen-
tation, the DOI is turned on when at least one of the altimeters is below
the threshold value, while the property of interest states that they both must
be below. Note that there are three transition step predicates, ta1_above,
a2_above, both_aboveu, that do not appear in any of the MIVCs. Con-
sequently, the three predicates are not necessary for the satisfaction of the
property.

9.2 Related Work

Ghassabani et al. [Ghassabani et al., 2017b] proposed an online al-
gorithm for MIVC enumeration which is based on the MUS enu-
meration algorithm MARCO [Liffiton et al., 2016]. The algorithm
iteratively chooses maximal unexplored subsets and tests them for
adequacy. Each maximal subset that is found to be adequate is then
shrunk into an MIVC via a custom shrinking procedure. This al-

154 minimal sets over a monotone predicate: enumeration and counting

gorithm enumerates MIVCs in an online manner with a relatively
steady rate of the enumeration. However, the authors of the algo-
rithm found it to be rather slow since the shrinking procedure can
be extremely time consuming as each check for adequacy is in fact a
model checking problem.

Therefore, Ghassabani et al. [Ghassabani et al., 2017b] proposed
another algorithm which, instead of computing MIVCs in on online
manner, rather computes only approximately minimal IVCs. The al-
gorithm is referred to as offline algorithm. In particular, the algorithm
iteratively picks maximal unexplored subsets, checks them for ade-
quacy, and turns the adequate subsets into approximately minimal
IVCs using an approximate shrinking algorithm called IVC_UC [Ghas-
sabani et al., 2016]. IVC_UC is able to identify IVCs which are often
very close to actual MIVCs, yet cheap to compute. The offline algo-
rithm does not provide any guarantee about the minimality of the
gradually provided IVCs until all subsets of T become explored. At
the end of the computation, the minimal and non-minimal produced
IVCs are distinguished using the subset inclusion relation. An ex-
perimental evaluation shows that the offline algorithm computes all
MIVCs much faster than the online algorithm. However, it does not
enumerate MIVCs online and thus on benchmarks that contain a
large number of MIVCs may produce no (guaranteed) MIVCs within
a given time limit.

9.3 Algorithm

In this section, we present our algorithm for online MIVC enumera-
tion, called GROW-SHRINK [Bendík et al., 2018c]. As the name of the
algorithm suggests, it is based on a growing and a shrinking proce-
dure. In the following, we first describe in Sections 9.3.1 and 9.3.2
the purpose of the two procedures and we sketch how they work.
Subsequently, in Section 9.3.4, we combine the two procedures into
the overall MIVC enumeration algorithm (GROW-SHRINK).

9.3.1 Shrinking Procedure

The purpose of the shrinking procedure is to identify individual min-
imal IVCs. The base workflow of the shrinking procedure is adopted
from the domain agnostic single MSMP extractor we presented in
Section 2.3.3, Algorithm 2.1. The input of the shrinking procedure is
an adequate subset U of T such that all adequate proper subsets of U
are unexplored3. The output is an MIVC Umivc such that Umivc � U. 3 Note that this is a departure from pre-

vious chapters where we assumed that
the input set U that we shrink is unex-
plored; here, due to technical reasons,
we only require proper subsets of U to
be unexplored.

The shrinking procedure is shown in Algorithm 9.2. The algo-
rithm iteratively maintains two sets: the input set U and a set K of
predicates that are critical for U. Initially, K � H. In each itera-
tion, the algorithm picks a predicate t P UzK and checks if Uzttu is
inadequate. If it is the case, then t is critical for U and hence it is
added to K. Otherwise, if Uzttu is adequate, the predicate t is re-
moved from U. The check for the adequacy of Uzttu is performed in

minimal inductive validity cores 155

input : an adequate set U
output: an MIVC Umivc such that Umivc � U

1 K � H
2 while U � K do
3 t Ð pick from UzK
4 if Uzttu R Unexplored then K Ð KY ttu
5 else
6 if isAdequatepUzttuq then U Ð Uzttu
7 else K Ð KY ttu
8 return U

Algorithm 9.2: A base single MIVC extraction procedure (i.e., shrinking) of GROW-SHRINK.

two steps. First, the algorithm tests whether Uzttu is explored and
if yes, then Uzttu is necessarily inadequate since we assume that all
adequate proper subsets of U are unexplored. Second, if Uzttu is
unexplored, then it is checked for adequacy with a model checker,
which we denote by isAdequatepUzttuq.

Proposition 9.2. Given an adequate subset Uinit of T such that all adequate
proper subsets of Uinit are unexplored, Algorithm 9.2 returns an MIVC
Umivc such that Umivc � Uinit. Moreover, since all adequate proper subsets
of Uinit are unexplored, then Umivc � Uinit or Umivc is unexplored.

Proof. The invariant of the algorithm is that K � U and every t P
K is critical for U. In every iteration, either K is enlarged or U is
reduced, hence eventually U � K and the algorithm terminates. At
this point, since every t P U is critical for U, then U is an MIVC
(Observation 2.7).

The most expensive part of the procedure are the model checking
calls. In the worst case, the algorithm performs k model checking
calls where k is the number of predicates in the input set U. In the
best case, the input U is an MIVC and for every t P U the set Uzttu
is explored, hence no model checking call is performed. Crucially,
observe that it is the explored inadequate sets that allows us to save
model checking calls during shrinking. Consequently, it might be
worth to explore (at least some) inadequate sets before the shrinking.
And that is the purpose of the growing procedure: to explore many
inadequate subsets, which in turn boosts the shrinking.

9.3.2 Growing Procedure

Recall that if a set N is determined to be inadequate then all of its
2|N| subsets are necessarily also inadequate. Therefore, the larger
is the set that is determined to be inadequate, the more inadequate
sets are explored. Thus, at the first glance, to identify inadequate
sets as quickly as possible, we should search for maximal inadequate
subsets (MISes) of T.

To find an MIS, we can identify an inadequate subset U of T and
then grow it to an MIS Umis such that U � Umis � T. To implement

156 minimal sets over a monotone predicate: enumeration and counting

input : inadequate U
output: approximately maximal inadequate set

1 M Ð a maximal M P Unexplored such that M � U
2 while isAdequatepMq do
3 Mivc Ð IVC_UCpMq // gets approximately minimal IVC

4 t Ð pick a predicate from pMivczUq
5 M Ð Mzttu
6 return M

Algorithm 9.3: A base approximate single MIS extraction procedure (i.e., growing) of GROW-SHRINK.

the grow, we can dualize the shrinking procedure presented in the
previous section. In particular, we can iteratively attempt to add
elements from TzU to U, checking each new set for adequacy and
keeping only changes that leave the set inadequate. Same as in the
case of the shrinking procedure, we can use the set Unexplored to
avoid checking sets whose status is already known. However, in the
worst case, such procedure can still perform |TzU| model checking
calls, which is quite expensive.

Instead, we propose to use a different approach. Algorithm 9.3
shows a procedure that, given an inadequate subset U of T, finds
an approximately maximal inadequate set. It first picks a maximal
unexplored set M such that M � U and checks it for adequacy. If
M is inadequate, then it is necessarily an MIS (Observation 2.12).
Otherwise, if M is adequate then it is iteratively reduced until an
inadequate set is found. In particular, whenever M is found to be
adequate, the approximative algorithm IVC_UC [Ghassabani et al.,
2016] is used to find an approximately minimal IVC Mivc of M. Mivc

succinctly explains M’s adequacy. In order to turn M into an inade-
quate set, it is reduced by one element from MivczU and checked for
adequacy. If M is still adequate then the approximate growing proce-
dure continues with a next iteration. Otherwise, if M is inadequate,
the procedure finishes.

Proposition 9.3. Given an unexplored inadequate subset U of T, Algo-
rithm 9.3 returns an unexplored inadequate subset M of T.

Proof. Let us denote initial M as Minit. Since Minit � U and M is
recursively reduced only by elements that are not contained in U,
then in every iteration it holds that U � M � Minit. Since both
U, Minit are unexplored, then M is necessarily also unexplored.

9.3.3 Procedure isAdequate

In Algorithm 9.4, we describe the procedure isAdequate that checks
whether a given subset of elements U � T is adequate, i.e., it checks
whether U is sufficient to prove the property of interest P. Note that
performing such a check is as hard as model checking ([Ghassabani
et al., 2016], Theorem 1). Thus, in the general case, determining
whether a set of model elements is an MIVC may not be possible

minimal inductive validity cores 157

1 res Ð checkAdqpUq
2 if res = Unknown then
3 approximateWarning Ð true // a global variable

4 return pres � Adequate)

Algorithm 9.4: isAdequatepUq

for model checking problems that are in general undecidable, such
as those involving infinite theories. We assume there is a function
checkAdq that checks whether or not P is provable for the transition
system pI, Uq. The function checkAdq can return Unknown (after a
user-defined timeout) as well as Adequate or Inadequate. For a
given set U, if our implementation is unable to prove the property,
we conservatively assume that the property is falsifiable (i.e. U is
inadequate) and we set a global warning flag approximateWarning to
the user that the results produced may be approximate.

9.3.4 Complete Algorithm

In this section, we describe how to combine the shrink and grow
methods to form an efficient online MIVC enumeration algorithm.
We call the algorithm GROW-SHRINK. Since knowledge of (approx-
imately) maximal inadequate subsets can be exploited to speed up
the shrinking procedure, it might be tempting to first find all MISes.
However, this is in general intractable since there can be up to ex-
ponentially many MISes (w.r.t. |T|). Instead, we propose to alter-
nate both the shrinking and growing procedures. Note that during
shrinking, we might determine some subsets to be inadequate. Such
subsets can be subsequently used as seeds for growing. Dually, ade-
quate subsets that are explored during growing can be later used as
seeds for the shrinking procedure.

The pseudocode of our algorithm is shown in Algorithm 9.5. The
computation of the algorithm starts with an initialisation procedure
init which creates a global variable Unexplored for maintaining the
unexplored subsets and a global shrinking queue shrinkingQueue for
storing seeds for the shrinking procedure. Then the main procedure
findMIVCs of our algorithm is called.

Procedure findMIVCs works iteratively. In each iteration, the pro-
cedure picks a maximal unexplored subset Umax and checks it for
adequacy. If Umax is inadequate, then Umax and all of its subsets are
marked as explored. Otherwise, if Umax is adequate, then the algo-
rithm IVC_UC [Ghassabani et al., 2016] is used to reduce Umax into an
approximately minimal IVC, and subsequently the procedure Shrink

is used to shrink it into an MIVC.
Procedure shrink works as described in Section 9.3.1. However,

besides shrinking the given set into an MIVC, the procedure has
also another purpose. Every inadequate set that is found during
the shrinking is stored in a queue growingQueue. At the end of the

158 minimal sets over a monotone predicate: enumeration and counting

1 Function initppI, Tq, Pq:
input : a transition system pI, Tq
input : a safety property P such that pI, Tq $ P
output: all MIVCs for pI, Tq $ P

2 UnexploredÐ PpTq // a global variable

3 shrinkingQueue Ð empty queue // a global variable

4 approximateWarning Ð false // a global variable

5 findMIVCspq

1 Function findMIVCspq:
2 while Unexplored � H do
3 Umax Ð a maximal set P Unexplored
4 if isAdequatepUmaxq then
5 Uivc Ð IVC_UCpUmaxq

6 shrinkpUivcq

7 else
8 UnexploredÐ UnexploredztN |N � Umaxu

9 while shrinkingQueue is not empty do
10 U Ð dequeuepshrinkingQueueq
11 shrinkpUq
1 Function shrinkpUq:
2 K ÐH

3 growingQueue Ð empty queue
4 while U � K do
5 t Ð choose t P UzK
6 if Uzttu R Unexplored then K Ð KY ttu
7 else
8 if isAdequatepUzttuq then U Ð Uzttu
9 else
10 K Ð KY ttu
11 enqueuepgrowingQueue, Uzttuq
12 output U // Output Minimal IVC

13 updateShrinkingQueuepUq
14 UnexploredÐ UnexploredztN |N � Uu
15 while growingQueue is not empty do
16 V Ð dequeuepgrowingQueueq
17 growpVq
1 Function growpVq:
2 M Ð a maximal set P Unexplored such that M � V
3 while isAdequatepMq do
4 Mivc Ð IVC_UCpMq
5 updateShrinkingQueuepMivcq

6 enqueuepshrinkingQueue, Mivcq

7 UnexploredÐ UnexploredztN |N � Mivcu

8 t Ð choose t P pMivczVq
9 M Ð Mzttu

10 UnexploredÐ UnexploredztN |N � Mu
1 Function updateShrinkingQueuepUq:
2 for V P shrinkingQueue do
3 if U � V then remove V from shrinkingQueue

Algorithm 9.5: The GROW-SHRINK algorithm.

minimal inductive validity cores 159

procedure, all of these inadequate sets are grown into approximately
maximal inadequate sets using the procedure grow.4 4 Note that one might think of im-

proving the shrinking procedure via
the MIVC approximation algorithm
IVC_UC. In particular, every time we
find Uzttu to be adequate, one could
use IVC_UC to compute an approxima-
tively minimal IVC A of Uzttu and then
reduce U to A instead of reducing U
just to Uzttu. Such a step would be
equivalent to the usage of unsat cores
during shrinking in the Boolean CNF
domain. The thing is that the execution
of IVC_UC is not so cheap as the ex-
traction of unsat cores. Moreover, based
on our empirical experience, the usage
of IVC_UC during shrinking usually do
not significantly reduce U since then
initial U is often very close to an MIVC
(due to the single call of IVC_UC before
the shrinking).

Procedure grow turns a given inadequate set V into an approxi-
mately maximal inadequate set M as described in Section 9.3.2. The
resultant set and all of its subsets are marked as explored. Moreover,
every adequate set found during the growing is marked as explored
and enqueued into shrinkingQueue. The queue shrinkingQueue is de-
queued at the end of each iteration of the main procedure findMIVCs

and the sets that were stored in the queue are shrunk to MIVCs.
Finally, note that every time an MIVC is found and every time a

set is added to shrinkingQueue, GROW-SHRINK calls the procedure
UpdateShrinkingQueue which, given an adequate set U, removes from
shrinkingQueue all supersets of U. Due to this procedure, the algo-
rithm maintains the following invariants about shrinkingQueue:

I1) For each already produced MIVC X it holds that there is no U in
the queue such that X � U.

I2) There are no two X, U in the queue such that X � U.

Correctness Clearly, the algorithm terminates and all MIVCs are
explored since the size of Unexplored is reduced after every iter-
ation. What remains to be shown is that every output set is an
MIVC and that every such MIVC is fresh, i.e., produced only once.
Since GROW-SHRINK outputs results only during shrinking, we ex-
amine the shrinking procedure. Recall that the input condition of
ShrinkpNq is that N is adequate and all proper subsets of N are un-
explored (Section 9.3.1), and the output condition is that result Nmivc

is an MIVC, and Nmivc � N or Nmivc is unexplored.
We shrink two kinds of adequate sets in our algorithm: either a

set Uivc that is a subset of an adequate maximal unexplored subset
Umax (procedure findMIVCs, line 6), or a set U that was stored in
shrinkingQueue (procedure findMIVCs, line 11). In the former case, by
Proposition 2.10 every adequate subset of Umax (and hence also ev-
ery adequate subset of Uivc) is unexplored, thus we satisfy the input
condition of the shrinking procedure, and by the output condition
the resultant set is an unexplored MIVC (i.e., a fresh MIVC).

However, in the latter case, all the sets stored in shrinkingQueue are
already explored. Here, we exploit the invariants I1) and I2) about
shrinkingQueue. Assume that we satisfy the input condition of shrink-
ing. Therefore, the resultant MIVC is unexplored (and thus fresh) or
it equals to the input set U, and by I1), there is no already produced
MIVC X such that X � U, hence U is fresh. Now, we show that we
satisfy the input condition, i.e., that all proper adequate subsets of U
are unexplored. By contradiction, assume that there is an adequate
proper explored subset U1 of U. Observe that in GROW-SHRINK we
mark adequate sets as explored only in two situations: either U1 is
a superset of a produced MIVC (procedure shrink, line 14) or U1 is
a superset of a set Y that was added to shrinkingQueue (procedure
grow, line 7). However, since U1 � U, due to I1), there is not such
produced MIVC, and due to I2), there is no such Y in shrinkingQueue.

160 minimal sets over a monotone predicate: enumeration and counting

00000

00100 01000 100000001000001

11000101000110010010010100011010001010010010100011

11100110101011001110110011010101101100110101100111

11011 11101 111101011101111

11111

Figure 9.1: The power-set from
the example execution of our al-
gorithm.

9.4 Implementation

We have implemented the GROW-SHRINK algorithm in an industrial
model checker called JKind [Gacek et al., 2018], which verifies safety
properties of infinite-state synchronous systems. It accepts Lustre
programs [Halbwachs et al., 1991] as input. The translation of Lustre
into a symbolic transition system in JKind is straightforward and is
similar to what is described in [Hagen and Tinelli, 2008]. Verifica-
tion is supported by multiple “proof engines” that execute in paral-
lel, including K-induction, property directed reachability (PDR), and
lemma generation. During verification, JKind emits SMT problems
using the theories of linear integer and real arithmetic, and can use
the Z3 [de Moura and Bjørner, 2008], Yices [Dutertre and Moura,
2006], MathSAT [Cimatti et al., 2013], SMTInterpol [Christ et al., 2012],
and CVC4 [Barrett et al., 2011] SMT solvers as back-ends. When a
property is proved and IVC generation is enabled, an additional
parallel engine executes the IVC_UC algorithm [Ghassabani et al.,
2016] to generate an (approximately) minimal IVC. To implement
our method, we have extended JKind with a new engine that im-
plements Algorithm 9.5 on top of Z3 [de Moura and Bjørner, 2008].
We use the JKind IVC generation engine to implement the procedure
IVC_UC in Algorithm 9.5. The source code is publicly available at:

https://github.com/jar-ben/online-mivc-enumeration

9.5 Example Execution

The following example explains the execution of our algorithm on a
simple instance where the transition step predicate T is given as a
conjunction of five sub-predicates tT1, T2, T3, T4, T5u. We do not ex-
actly state what are the predicates and what is the safety property of
interest. Instead, Figure 9.1 illustrates the power set of tT1, T2, T3, T4,
T5u together with an information about adequacy of individual sub-
sets. The subsets with solid green border are the adequate subsets,
and the subsets with dashed red border are the inadequate ones. To
save space, we encode subsets as bitvectors, for example the subset

https://github.com/jar-ben/online-mivc-enumeration

minimal inductive validity cores 161

tT1, T2, T4u is written as 11010. There are three MIVCs in this exam-
ple: 00011, 01001, and 11010.

We illustrate the first iteration of the main procedure findMIVCs

of our algorithm. Initially, all subsets are unexplored, i.e. map� ^
map� � True and the queue shrinkingQueue is empty. The procedure
starts by finding a maximal unexplored subset and checking it for
adequacy. In our case, Umax � 11111 is the only maximal unexplored
subset and it is determined to be adequate. Thus, the algorithm
IVC_UC is used to compute an approximately minimal IVC UIVC �

01101 which is then shrunk to an MIVC 01001.
During the shrinking, sets 00101, 01001, and 01000 are subse-

quently checked for adequacy and determined to be inadequate, ad-
equate, and inadequate, respectively. The set 01001 is the resultant
MIVC, thus the formula map�^map� is updated to map�^map� �
True ^ p x2 _ x5q. The other two sets, 00101 and 01000, are en-
queued to the growingQueue and grown at the end of the procedure.

We first grow the set 00101. Initially, the procedure grow picks
M � 10111 as the maximal unexplored superset of 00101, and checks
it for adequacy. It is adequate and thus, an approximately minimal
IVC MIVC � 00011 is computed, enqueued to shrinkingQueue, and
formula map� ^map� is updated to map� ^map� � True^ p x2 _

 x5q ^ p x4 _ x5q. Then, M is (based on MIVC) reduced to M �

10101 and checked for adequacy. It is found to be inadequate, thus
formula map� ^map� is updated to map� ^map� � True^ p x2 _

 x5q ^ p x4 _ x5q ^ px2 _ x4q, and the procedure terminates.
The growing of the set 01000 results into an approximately max-

imal inadequate subset 01110. Moreover, an approximately min-
imal IVC 11110 is found during the growing and enqueued into
shrinkingQueue. The formula map� ^ map� is updated to map� ^
map� � True^p x2_ x5q^ p x4_ x5q^ px2_ x4q^ p x1_ x2_

 x3 _ x4q ^ px1 _ x5q.
After the second grow, the procedure shrink terminates and the

main procedure findMIVCs continues. The queue shrinkingQueue con-
tains two sets: 00011, 11110, thus the procedure now shrinks them.
During shrinking the set 00011, the algorithm would attempt to check
the sets 00001 and 00010 for adequacy, however since both these are
already explored, the set 00011 is identified to be an MIVC without
performing any adequacy checks. The procedure findMIVCs would
now shrink also the last set 11110 in the queue shrinkingQueue, and
continue with a next iteration.

9.6 Experimental Evaluation

We now experimentally compare GROW-SHRINK, the algorithm pre-
sented in this chapter, and the two state-of-the-art algorithms (briefly
described in Section 9.2): OfflineMARCO, the algorithm from [Ghas-
sabani et al., 2017b], and OnlineMARCO, a variant of the algorithm
from [Ghassabani et al., 2017b] that performs a shrink step prior to

162 minimal sets over a monotone predicate: enumeration and counting

 0

 50

 100

 150

 200

 250

 300

 0 5 10 15 20 25 30

#
 M

IV
Cs

individual benchmarks

Grow-Shrink
Online MARCO

(a)

 1

 10

 100

 1000

 0 50 100 150 200 250 300 350
tim

e
to

 c
om

pl
et

e
individual benchmarks

Grow-Shrink
Online MARCO
Offline MARCO

(b)

Figure 9.2: Figure (a) shows the
number of produced MIVCs by
online algorithms. Figure (b)
shows the runtime for tractable
benchmarks in a log scale.

returning a solution to ensure minimality. We investigate the follow-
ing research questions:

RQ1: For the large models where the complete MIVC enumeration
is intractable, how many MIVCs are found within the given time
limit?

RQ2: For the tractable models, i.e. models in which all MIVCs are
found, how much time is required to complete the enumeration
of MIVCs?

RQ3: What is the (average) number of solver (model-checking) calls
with result adequate/inadequate required by evaluated online al-
gorithms to produce individual MIVCs?

Experimental Setup We start from a benchmark suite that is a su-
perset of the benchmarks used in [Ghassabani et al., 2017b]. This
suite contains 660 models, and includes all models that yield a valid
result (530 in total) from previous Lustre model checking papers [Ha-
gen and Tinelli, 2008, Mebsout and Tinelli, 2016] and 130 industrial
models yielding valid results derived from an infusion pump sys-
tem [Murugesan et al., 2013] and other sources [Mebsout and Tinelli,
2016, Backes et al., 2015]. As this chapter is concerned with ana-
lyzing problems involving multiple MIVCs, we include only models
that had more than 4 MIVCs (46 models in total). To consider prob-
lems with many IVCs, we took those models and mutated them,
constructing 20 mutants for each model. The mutants varied both in
the number and in the size of individual MIVCs. We added the mu-
tants that still yielded valid results and have more than 5 MIVCs (384

in total) back to the benchmark suite. Thus, the final suite contains
430 Lustre models. The original benchmarks and our augmented
benchmark are available online5. 5 https://github.com/elaghs/

benchmarksFor each test model, we configured JKind to use the Z3 solver and
the “fastest” mode of JKind (which involves running the k-induction
and PDR engines in parallel and terminating when a solution is
found). The experiments were run on a 3.50GHz Intel(R) i5-4690

processor 16 GB memory machine running Linux with a 30 minute
timeout. All experimental data is available online6. 6 https://github.com/jar-ben/

online-mivc-enumeration

https://github.com/elaghs/benchmarks
https://github.com/elaghs/benchmarks
https://github.com/jar-ben/online-mivc-enumeration
https://github.com/jar-ben/online-mivc-enumeration

minimal inductive validity cores 163

 50

 100

 150

 200

 250

 300

 10 20 30 40 50 60 70

#
 a

de
qu

at
e

ch
ec

ks

produced MIVCs

Grow-Shrink
Online MARCO

(a)

8000

 1

 10

 100

 1000

 10 20 30 40 50 60 70

#
 in

ad
eq

ua
te

 c
he

ck
s

produced MIVCs

Grow-Shrink
Online MARCO

(b)

Figure 9.3: Average number of
performed adequacy checks re-
quired to produce individual
MIVCs. Figure (a) shows the
number of checks with result
“adequate”, and Figure (b) the
number of checks with result
“inadequate”. Note that Fig-
ure (b) is in a log scale.

9.6.1 Experimental Results

RQ1 and RQ2 Data related to the first two research questions are
shown in Figures 9.2(a) and 9.2(b). Figure 9.2(a) describes the num-
ber of MIVCs found be the two online algorithms in the intractable
benchmarks, i.e. the benchmarks where the algorithms did not com-
plete the computation within the time limit. There are 33 such bench-
marks. GROW-SHRINK substantially outperforms OnlineMARCO in
the majority of the benchmarks, finding an average of 55% additional
MIVCs.

In Figure 9.2(b), we show the time for each algorithm needed to
complete the MIVC enumeration in case of the 397 tractable bench-
marks. GROW-SHRINK is on average only 1.08 times slower than
OfflineMARCO, yet as previously discussed, it has the advantage of
returning guaranteed MIVCs, rather than approximate MIVCs, al-
ready during the computation. Compared to OnlineMARCO, GROW-

SHRINK is on average 1.5 times faster.

RQ3 For RQ3, we examined the number of required calls to the
solver per MIVC. For this question, we used the 33 models that con-
tained a large number of MIVCs (¡70) in order to show the solver ef-
ficiency as the number of MIVCs increased. A point with coordinates
px, yq states that the algorithm needed to perform y solver calls (on
average) in order to produce (find) the first x MIVCs. We grouped
the calls in terms of the number of calls that returned adequate vs. in-
adequate results. It is evidenced by the results in Figure 9.3, the new
algorithm improves upon OnlineMARCO as the number of MIVCs
becomes larger.

The improvement in the number of inadequate calls is due the novel
shrinking and growing procedures. Each (approximately) maximal
inadequate subset found by the growing procedure allows to save
(up to exponentially) many inadequate calls during subsequent ex-
ecutions of the shrinking procedure. Indeed, GROW-SHRINK per-
formed on average only 353 inadequate calls to output the first 70

MIVCs, whereas OnlineMARCO needed to perform 7775 calls to out-
put the same number of MIVCs.

The improvement in the number of adequate calls is not so signif-
icant as in the case of inadequate calls. Yet, since the adequate calls
are usually much more time consuming than inadequate ones, even
a slight saving in the number of adequate calls might significantly

164 minimal sets over a monotone predicate: enumeration and counting

speed up the whole computation. GROW-SHRINK saves adequate
calls due to the usage of the shrinking queue and due to the in-
variants that are maintained by the queue. In particular, shall two
comparable sets appear in the queue, only the smaller is left. Thus,
the algorithm avoids shrinking of relatively large sets and saves some
adequate calls.

9.7 Summary and Future Work

We have presented an online algorithm, called GROW-SHRINK, for
computation of minimal Inductive Validity Cores (MIVCs). The new
algorithm substantially outperforms previous approaches. As op-
posed to the OfflineMARCO algorithm in [Ghassabani et al., 2017b], it
is guaranteed to produce minimal IVCs. As opposed to a naive ex-
tension OnlineMARCO, the new algorithm is substantially faster and
requires fewer solver calls as the number of MIVCs increases. We
believe that this new algorithm will substantially increase the appli-
cability of software engineering tasks that require MIVCs.

In the future, we hope to examine parallel computation of MIVCs
using a variant of this algorithm to further increase scalability. An-
other possible direction is to evaluate GROW-SHRINK for other in-
stances of MSMPs (minimal sets over a monotone predicate). In par-
ticular, note that besides the approximate MIVC extractor IVC_UC,
GROW-SHRINK does not directly exploit any specific properties of
the MIVC domain. Hence, GROW-SHRINK can be straightforwardly
used for other instances of MSMPs. So far, we have tried to use
it only for the task of finding minimal unsatisfiable subsets in the
Boolean CNF domain (Chapter 5), and GROW-SHRINK did not per-
form very well compared to enumerators that are tailored to MUSes.
However, based on our evaluation of domain agnostic MUS/MSMP
enumeration algorithms (Section 4.7), the performance of individual
algorithms vary a lot for various instances of MSMPs. Hence, it is
very likely that GROW-SHRINK would be efficient for some instances
of MSMPs.

Part V

Minimal Sufficient
Reductions

10
Relaxing Timed Automata For Reachability

In the last chapter of the thesis, we study a yet another instance
of minimal sets over a monotone predicate called minimal sufficient
reductions (MSRs). MSR is our novel concept [Bendík et al., 2021] that
find an application in the area of timed automata.

A timed automaton (TA) [Alur and Dill, 1994] is a finite automa-
ton extended with a set of real-time variables, called clocks, which
capture the time. The clocks enrich the semantics and the constraints
on the clocks restrict the behavior of the automaton, which are par-
ticularly important in modeling time-critical systems. The examples
of TA models of critical systems include scheduling of real-time sys-
tems [Fehnker, 1999, David et al., 2009, Guan et al., 2007], medical
devices [Kwiatkowska et al., 2015, Jiang et al., 2014], and rail-road
crossing systems [Wang, 2004].

Model-checking methods allow for verifying whether a given TA
meets a given system specification. Contemporary model-checking
tools, such as UPPAAL [Behrmann et al., 2006] or Imitator [André
et al., 2012], have proved to be practically applicable on various
industrial case studies [Behrmann et al., 2006, André et al., 2019b,
Henzinger et al., 2001]. Unfortunately, during the system design
phase, the system information is often incomplete. A designer is of-
ten able to build a TA with correct structure, i.e., exactly capturing
locations and transitions of the modeled system, however the ex-
act clock (timing) constraints that enable/trigger the transitions are
uncertain. Thus, the produced TA often does not meet the specifi-
cation (i.e., it does not pass the model-checking) and it needs to be
fixed. If the specification declares universal properties, e.g., safety or
unavoidability, that need to hold on each trace of the TA, a model-
checker either returns “yes”, or it returns “no” and generates a trace,
called “counter example”, along which the property is violated. This
trace can be used to repair the model in an automated way [Kölbl
et al., 2019]. However, in the case of existential properties, such as
reachability, the property has to hold on a trace of the TA. The model-
checker either returns “yes” and generates a witness trace satisfying
the property, or returns just “no” and does not provide any addi-
tional information that would help the designer to correct the TA.

168 minimal sets over a monotone predicate: enumeration and counting

Contribution. In this chapter, we study the following problem: given
a timed automaton A and a reachability property that is not satisfied
by A, relax clock constraints of A such that the resultant automaton
A1 satisfies the reachability property. Moreover, the goal is to min-
imize the number of the relaxed clock constraints and, secondary,
also to minimize the overall change of the timing constants used in
the clock constraints. We propose a two step solution for this prob-
lem. In the first step, we identify a minimal sufficient reduction (MSR)
of A, i.e., an automaton A2 that satisfies the reachability property
and originates from A by removing only a minimal necessary set of
clock constraints. In the second step, instead of completely removing
the clock constraints, we employ mixed integer linear programming
(MILP) to find a minimal relaxation of the constraints that leads to a
satisfaction of the reachability property along a witness path.

The underlying assumption is that during the design phase the
most suitable timing constants reflecting the system properties are
defined. Thus, our goal is to generate a TA satisfying the reachabil-
ity property by changing a minimum number of timing constants.
Some of the constraints of the initial TA can be strict (no relaxation
is possible), which can easily be integrated to the proposed solution.
Thus, the proposed method can be viewed as a way to handle design
uncertainties: develop a TA A in a best-effort basis and apply our
algorithm to find a A1 that is as close as possible to A and satisfies the
given reachability property.
Related Work. Another way to handle uncertainties about timing
constants is to build a parametric timed automata (PTA), i.e., a TA
where clock constants can be represented with parameters. Subse-
quently, a parameter synthesis tool, such as [Lime et al., 2009, André
et al., 2012, Bezděk et al., 2018], can be used to find suitable values of
the parameters for which the resultant TA satisfies the specification.
However, most of the parameter synthesis problems are undecid-
able [André, 2019]. While symbolic algorithms without termination
guarantees exist for some subclasses [Bezděk et al., 2016, Jovanovic
et al., 2015, André et al., 2019c], these algorithms are computation-
ally very expensive compared to model checking (see [André, 2018]).
Moreover, minimizing the number of modified clock constraints is
not straightforward.

A related TA repair problem has been studied in a recent work [An-
dré et al., 2019a], where the authors also assumed that some of the
constraints are incorrect. To repair the TA, they parametrized the
initial TA and generated parameters by analyzing traces of the TA.
However, the authors [André et al., 2019a] do not focus on repairing
the TA w.r.t. reachability properties as we do. Instead, their goal is
to make the TA compliant with an oracle that decides if a trace of the
TA belongs to a system or not. Thus, their approach can not handle
reachability properties. Furthermore in [André et al., 2019a], the to-
tal change of the timing constraints is minimized, while we primarily
minimize the number of changed constraints, then the total change.

relaxing timed automata for reachability 169

10.1 Preliminaries

10.1.1 Timed Automata

A timed automaton (TA) [Alur and Dill, 1994, Larsen and Yi, 1997,
Alur, 1999] is a finite-state machine extended with a finite set C of
real-valued clocks. A clock x P C measures the time spent after its
last reset. In a TA, clock constraints are defined for locations (states)
and transitions. A simple clock constraint is defined as x� y � c where
x, y P CY t0u, �P t ,¤u and c P ZY t8u.1 Simple clock constraints 1 Simple constraints are only defined as

upper bounds to simplify the presenta-
tion. This definition is not restrictive
since x � y ¥ c and x ¥ c are equiv-
alent to y � x ¤ �c and 0� x ¤ �c,
respectively. A similar argument holds
for strict inequality p¡q.

and constraints obtained by combining these with conjunction oper-
ator (^) are called clock constraints. The sets of simple and all clock
constrains are denoted by ΦSpCq and ΦpCq, respectively. For a clock
constraint φ P ΦpCq, Spφq denotes the simple constraints from φ,
e.g., Spx � y 10^ y ¤ 20q � tx � y 10, y ¤ 20u. A clock valua-
tion v : C Ñ R� assigns non-negative real values to each clock. The
notation v |ù φ denotes that the clock constraint φ evaluates to true
when each clock x is replaced with vpxq. For a clock valuation v and
d P R�, v� d is the clock valuation obtained by delaying each clock
by d, i.e., pv� dqpxq � vpxq � d for each x P C. For λ � C, vrλ :� 0s
is the clock valuation obtained after resetting each clock from λ, i.e.,
vrλ :� 0spxq � 0 for each x P λ and vrλ :� 0spxq � vpxq for each
x P Czλ.

Definition 10.1 (timed automata). A timed automaton (TA) is a tuple
A � pL, l0, C, ∆, Invq, where L is a finite set of locations, l0 P L is the
initial location, C is a finite set of clocks, ∆ � L� PpCq �ΦpCq � L is a
finite transition relation, and Inv : L Ñ ΦpCq is an invariant function.

For a transition e � pls, λ, φ, ltq P ∆, ls is the source location, lt
is the target location, λ is the set of clocks reset on e and φ is the
guard (i.e., a clock constraint) tested for enabling e. The semantics of
a TA is given by a labelled transition system (LTS). An LTS is a tuple
T � pS, s0, Σ,Ñq, where S is a set of states, s0 P S is an initial state,
Σ is a set of symbols, and Ñ� S� Σ� S is a transition relation. A
transition ps, a, s1q PÑ is also shown as s a

Ñ s1.

Definition 10.2 (LTS semantics for TA). Given a timed automaton A �

pL, l0, C, ∆, Invq, the labelled transition system TpAq � pS, s0, Σ,Ñq is
defined as follows:

• S � tpl, vq | l P L, v P R
|C|
� , v |ù Invplqu,

• s0 � pl0, 0q, where 0pxq � 0 for each x P C,

• Σ � tactu YR�, and

• the transition relation Ñ is defined by the following rules:

– delay transition: pl, vq d
Ñ pl, v� dq if v� d |ù Invplq

– discrete transition: pl, vq act
Ñ pl1, v1q if there exists pl, λ, φ, l1q P ∆ such

that v |ù φ, v1 � vrλ :� 0s, and v1 |ù Invpl1q.

170 minimal sets over a monotone predicate: enumeration and counting

l0

start

z ¤ 10 l1

z ¤ 10^ x ¤ 14

l2

y ¤ 1

l3

z ¤ 10^ u ¤ 26

l4

l5

x ¤ 10

l6

x ¤ 10

l7

x ¤ 10

x :� 0, z :� 0

e1 x ¥ 9

e2 z ¥ 3
y :� 0

e3

z :� 0

e4 u ¥ 22^ z ¥ 9

z :� 0

z ¥ 9^ x ¥ 25
e5 t ¤ 45^

e6 x ¥ 9

x :� 0, y :� 0
e7 x ¥ 9^ z ¤ 15

x :� 0, z :� 0

e8 x ¥ 9^ u ¥ 35

x :� 0, u :� 0

y ¤ 15^ x ¥ 9
e9 t ¤ 45^

Figure 10.1: An example of a
timed automaton.The notation sÑds1 is used to denote a delay transition of duration

d followed by a discrete transition from s to s1, i.e., s d
Ñ s act

Ñ s1. A run
ρ of A is either a finite or an infinite alternating sequence of delay
and discrete transitions, i.e., ρ � s0Ñd0 s1Ñd1 s2Ñd2 � � � . The set of all
runs of A is denoted by rrAss.

A path π of A is an interleaving sequence of locations and tran-
sitions, π � l0, e1, l1, e2, . . ., where ei�1 � pli, λi�1, φi�1, li�1q P ∆
for each i ¥ 0. Furthermore, a path π � l0, e1, l1, e2, . . . of A is
said to be realizable if there exists a delay sequence d0, d1, . . . such
that pl0, 0qÑd0pl1, v1qÑd1pl1, v2qÑd2 � � � is a run of A and for every
i ¥ 1, the ith discrete transition is taken according to ei, i.e., ei �

pli�1, λi, φi, liq, vi�1 � di�1 |ù φi, vi � pvi�1 � di�1qrλi :� 0s and
vi |ù Inv1pliq.

For a TA A and a subset of its locations LT � L, LT is reachable
on A if there exists ρ � pl0, 0qÑd0pl1, v1qÑd1 . . .Ñdn�1pln, vnq P rrAss
such that ln P LT ; otherwise, LT is unreachable. The reachability prob-
lem, isReachablepA, LTq, is decidable and implemented in various
verification tools including UPPAAL [Behrmann et al., 2006]. The
verifier either returns “No” indicating that such a run does not exist,
or it generates a run (witness) satisfying the reachability require-
ment.

Example 10.1. Figure 10.1 illustrates a TA with 8 locations: tl0, . . . , l7u,
9 transitions: te1, . . . , e9u, an initial location l0, and an unreachable set of
locations LT � tl4u.

10.1.2 Timed Automata Relaxations and Reductions

For a timed automaton A � pL, l0, C, ∆, Invq, the set of pairs of tran-
sition and associated simple constraints are defined as follows:

Ψp∆q � tpe, ϕq | e � pls, λ, φ, ltq P ∆, ϕ P Spφqu (10.1)

The set of pairs of location and associated simple constraints is de-
fined as:

ΨpInvq � tpl, ϕq | l P L, ϕ P SpInvplqqu (10.2)

relaxing timed automata for reachability 171

Definition 10.3 (constraint-relaxation). Let φ P ΦpCq be a constraint
over C, Θ � Spφq be subset of its simple constraints and r : Θ Ñ NYt8u

be a positive valued relaxation valuation. The relaxed constraint is defined
as:

Rpφ, Θ, rq �

�
� ©

ϕPSpφqzΘ
ϕ

�

^

�
� ©

ϕ�x�y�cPΘ

x� y � c� rpϕq

�

 (10.3)

Intuitively, Rpφ, Θ, rq relaxes only the thresholds of simple con-
straints from Θ with respect to r, e.g., Rpx � y ¤ 10^ y 20, ty
20u, rq � x � y ¤ 10 ^ y 23, where rpy 20q � 3. Setting
a threshold to 8 implies removing the corresponding simple con-
straint, e.g., Rpx� y ¤ 10^ y 20, ty 20u, rq � x� y ¤ 10, where
rpy 20q � 8. Note that Rpφ, Θ, rq � φ when Θ is empty.

Definition 10.4 ((D, I, r)-relaxation). Let A � pL, l0, C, ∆, Invq be a
timed automaton, D � Ψp∆q and I � ΨpInvq be transition and location
constraint sets, and r : D Y I Ñ N Y t8u be a positive valued relax-
ation valuation. The (D, I, r)-relaxation of A, denoted A D,I,r¡, is a TA
A1 � pL1, l10, C1, ∆1, Inv1q such that:

• L � L1, l0 � l10, C � C1, and

• ∆1 originates from ∆ by relaxing D via r. For e � pls, λ, φ, ltq P ∆, let
D|e � tϕ | pe, ϕq P Du, r|epϕq � rpe, ϕq, then

∆1 � tpls, λ, Rpφ, D|e, r|eq, ltq | e � pls, λ, φ, ltq P ∆u

• Inv1 originates from Inv by relaxing I via r. For l P L, let I|l � tϕ |

pl, ϕq P Iu, and r|lpϕq � rpl, ϕq, then Inv1plq � RpInvplq, I|l , r|lq.

Intuitively, the TA A D,I,r¡ emerges from a TA A by relaxing the
guards of the transitions from the set D and relaxing invariants of
the locations from I with respect to r. In the special case of set-
ting the threshold of each constraint from D and I to 8, i.e., when
rpaq � 8 for each a P DY I, the corresponding simple constraints are
effectively removed, which is called a (D,I)-reduction and denoted
by A D,I¡. Note that A � A H,H¡.

Proposition 10.1. Let A � pL, l0, C, ∆, Invq be a timed automaton, D �

Ψp∆q and I � ΨpInvq be sets of simple guard and invariant constraints,
and r : D Y I Ñ N Y t8u be a relaxation valuation. Then rrAss �
rrA D,I,r¡ss.

Proof. First, observe that for a clock constraint φ P ΦpCq, a subset of
its simple constraints Θ � Spφq, a relaxation valuation r1 for Θ, and
the relaxed constraint Rpφ, Θ, r1q as in Definition 10.3, it holds that

for any clock valuation v : v |ù φ ñ v |ù Rpφ, Θ, r1q. (10.4)

Now, consider a run ρ � pl0, 0qÑd0pl1, v1qÑd1pl2, v2qÑd2 � � � P rrAss.
Let π � l0, e1, l1, e2, . . . with ei � pli�1, λi, φi, liq P ∆ for each i ¥ 1 be
the path realized as ρ via delay sequence d0, d1, By Definition 10.4

172 minimal sets over a monotone predicate: enumeration and counting

for each pl, λ, φ, l1q P ∆, there is pl, λ, Rpφ, D|e, r|eq, l1q P ∆1. We define
a path induced by π on A D,I,r¡ as:

Mpπq � l0, pl0, λ1, Rpφ1, D|e1 , r|e1q, l1q, l1, pl1, λ2, Rpφ2, D|e2 , r|e2q, l2, . . .
(10.5)

By (10.4), for each i � 0, . . . , n�1 it holds that vi |ù RpInvpliq, D|li , r|liq,
vi � di |ù RpInvpliq, D|li , r|liq and vi � di |ù Rpφi�1, D|ei�1 , r|ei�1q. Thus
Mpπq is realizable on A D,I,r¡ via the same delay sequence and
ρ P rrA D,I,r¡ss. As ρ P rrAss is arbitrary, we conclude that rrAss �
rrA D,I,r¡ss.

10.1.3 Problem Statement

Problem 10.1. Given a TA A � pL, l0, C, ∆, Invq and a set of target loca-
tions LT � L that is unreachable on A, find a (D, I, r)-relaxation A D,I,r¡

of A such that LT is reachable on A D,I,r¡. Moreover, the goal is to mini-
mize the number |DY I| of constraints that are relaxed, and, secondary, we
tend to minimize the overall change of the clock constraints

°
cPDYI rpcq.

We propose a two step solution to this problem. In the first step,
we identify a minimal subset DY I of the simple constraints Ψp∆q Y
ΨpInvq such that LT is reachable on the (D, I)-reduction A D,I¡.
Consequently, we can obtain a witness path of the reachability on
A D,I¡ from the verifier. The path would be realizable on A if we
remove the constraints D Y I. In the second step, instead of com-
pletely removing the constraints D Y I, we find a relaxation valua-
tion r : DY I Ñ NY t8u such that the path found in the first step is
realizable on A D,I,r¡. To find r, we introduce relaxation parameters
for constraints in D Y I. Subsequently, we solve an MILP problem
to find a valuation of the parameters, i.e., r, that makes the path re-
alizable on A D,I,r¡ and minimizes

°
cPDYI rpcq. Note that it might

be the case that the reduction A D,I¡ contains multiple realizable
paths that lead to LT , and another path might result in a smaller
overall change. While our approach can be applied to a number of
paths, processing all of them can be practically intractable.

10.2 Minimal Sufficient (D,I)-Reductions

Throughout this section, let us simply write a reduction when talking
about a (D,I)-reduction of A. We use two notations for naming a
reduction; either we simply use capital letters, e.g., M, N, K to name
a reduction, or we use the notation A D,I¡ to also specify the sets
D, I of simple clock constraints. Given a reduction N � A D,I¡, we
write |N| to denote the cardinality |DY I|. Furthermore, let us by RA
denote the set of all reductions. We define a partial order relation �

on RA as A D,I¡ � A D1,I1¡ iff DY I � D1 Y I1. Similarly, we write
A D,I¡ � A D1,I1¡ iff D Y I � D1 Y I1. We say that a reduction
A D,I¡ is a sufficient reduction (w.r.t. A and LT) iff LT is reachable
on A D,I¡; otherwise, A D,I¡ is an insufficient reduction. Crucial
observation for our work is that the property of being a sufficient
reduction is monotone w.r.t. the partial order:

relaxing timed automata for reachability 173

Proposition 10.2. Let A D,I¡ and A D1,I1¡ be reductions of A such
that A D,I¡ � A D1,I1¡. If A D,I¡ is sufficient then A D1,I1¡ is also
sufficient.

Proof. Note that A D1,I1¡ is a (D1zD,I1zI)-reduction of A D,I¡. By
Proposition 10.1, rrA D,I¡ss � rrA D1,I1¡ss, i.e., the run of A D,I¡

that witnesses the reachability of LT is also a run of A D1,I1¡.

Definition 10.5 (MSR). A sufficient reduction A D,I¡ is a minimal suf-
ficient reduction (MSR) iff there is no c P D Y I such that the reduc-
tion A Dztcu,Iztcu¡ is sufficient. Equivalently, due to Proposition 10.2,
A D,I¡ is an MSR iff there is no sufficient reduction A D1,I1¡ such that
A D1,I1¡ � A D,I¡.

Recall that a reduction A D,I¡ is determined by D � Ψp∆q and
I � ΨpInvq. Consequently, |RA| � 2|Ψp∆qYΨpInvq|. Moreover, there
can be up to

� k
k{2
�

MSRs where k � |Ψp∆q Y ΨpInvq| (see Sperner’s
theorem [Sperner, 1928]). Also note, that the minimality of a reduc-
tion does not mean a minimum number of simple clock constraints
that are reduced by the reduction; there can exist two MSRs, M and
N, such that |M| |N|. Since our overall goal is to relax A as least as
possible, we identify a minimum MSR, i.e., an MSR M such that there
is no MSR M1 with |M1| |M|, and then use the minimum MSR for
the MILP part (Section 10.3) of our overall approach. There can be
also up to

� k
k{2
�

minimum MSRs.

Example 10.2. Assume the TA A from Example 10.1 (illustrated in Fig-
ure 10.1) and let LT � tł4u which is unreachable on A. There are 24 MSRs
and 4 of them are minimum. For example, A D,I¡ with D � tpe5, x ¥
25qu and I � tpl3, u ¤ 26qu is a minimum MSR, and A D1,I1¡ with
D1 � tpe9, y ¤ 15q, pe7, z ¤ 15qu and I1 � tpl6, x ¤ 10qu is a non-
minimum MSR.

Observe, that MSRs are an instance of minimal sets over a mono-
tone predicate:

Observation 10.1. Minimal sufficient reductions (MSRs) are an instance
of Minimal Sets over a Monotone Predicate (MSMPs) as defined in Sec-
tion 2.2. In particular, the set C of elements is the set Ψp∆q Y ΨpInvq of
all simple clock constraints of A, and for every D Y I with D � Ψp∆q
and I � ΨpInvq, the predicate P is defined as PpDY Iq � 1 iff the reduc-
tion A D,I¡ is sufficient. The monotonicity of P is witnessed in Proposi-
tion 10.2. Hence, P1-minimal subsets correspond to MSRs and P0-maximal
subsets correspond to maximal insufficient reductions.

10.2.1 Base Scheme For Computing a Minimum MSR

Algorithm 10.1 shows a high-level scheme of our approach for com-
puting a minimum MSR. The algorithm iteratively identifies an or-
dered set of MSRs, |M1| ¡ |M2| ¡ � � � ¡ |Mk|, such that the last MSR
Mk is a minimum MSR. Each of the MSRs, say Mi, is identified in two
steps. First, the algorithm finds a seed, i.e., a reduction Ni such that

174 minimal sets over a monotone predicate: enumeration and counting

input : a timed automaton A � pL, l0, C, ∆, Invq
input : an unreachable set LT � L of locations of A
output: a minimum MSR of A w.r.t. LT

1 N Ð A Ψp∆q,ΨpInvq¡; MÐH; I ÐH

2 while N � null do
3 M, I Ð shrinkpN, Iq // Algorithm 10.2

4 MÐMY tMu
5 N, I Ð findSeedpM,M, Iq // Algorithm 10.3

6 return M

Algorithm 10.1: A minimum MSR extraction scheme.

Ni is sufficient and |Ni| |Mi�1|. Second, the algorithm shrinks Ni

into an MSR Mi such that Mi � Ni (and thus |Mi| ¤ |Ni|). The initial
seed N1 is A Ψp∆q,ΨpInvq¡, i.e., the reduction that removes all simple
clock constraints (which makes all locations of A trivially reachable).
Once there is no sufficient reduction Ni with |Ni| |Mi�1|, we know
that Mi�1 � Mk is a minimum MSR.

Note that the algorithm also maintains two auxiliary sets, M and
I , to store all identified MSRs and insufficient reductions, respec-
tively. The two sets are used during the process of finding and
shrinking a seed which we describe below.

10.2.2 Shrinking a Seed

Our approach for shrinking a seed N into an MSR M is based on
the domain agnostic single MSMP extractor we presented in 2.3.3,
Algorithm 2.1, extended via two concepts that are specific for MSRs:
critical simple clock constraints and reduction cores.

Definition 10.6 (critical constraint). Given a sufficient reduction A D,I¡,
a simple clock constraint c is critical for A D,I¡ iff A Dztcu,Iztcu¡ is in-
sufficient.

Proposition 10.3. If a constraint c P D Y I is critical for a sufficient
reduction A D,I¡ then c is critical for every sufficient reduction A D1,I1¡,
A D1,I1¡ � A D,I¡. Moreover, by Definitions. 10.5 and 10.6, A D,I¡ is
an MSR iff every c P DY I is critical for A D,I¡.

Proof. By contradiction, assume that c is critical for A D,I¡ but not
for A D1,I1¡, i.e., A Dztcu,Iztcu¡ is insufficient and A D1ztcu,I1ztcu¡
is sufficient. As A D1,I1¡ � A D,I¡, we have A D1ztcu,I1ztcu¡ �

A Dztcu,Iztcu¡. By Proposition 10.2, if the reduction A D1ztcu,I1ztcu¡
is sufficient then A Dztcu,Iztcu¡ is also sufficient.

Note that critical constraints are a domain specific instance of the
general MSMP concept of critical elements (Definition 2.8), and Propo-
sition 10.3 is thus a domain specific instance of the general MSMP
Observation 2.7.

Definition 10.7 (reduction core). Let A D,I¡ be a sufficient reduction,
ρ a witness run of the sufficiency (i.e. reachability of LT on A D,I¡), and

relaxing timed automata for reachability 175

1 X ÐH

2 while pDY Iq � X do
3 c Ð pick a simple clock constraint from pDY IqzX
4 if A Dztcu,Iztcu¡ R I and A Dztcu,Iztcu¡ is sufficient then
5 ρ Ð a witness run of the sufficiency of A Dztcu,Iztcu¡

6 A D,I¡ Ð the reduction core of A Dztcu,Iztcu¡ w.r.t. ρ

7 else
8 X Ð XY tcu
9 I Ð I Y tN P RA |N � A Dztcu,Iztcu¡u

10 return A D,I¡, I

Algorithm 10.2: shrinkpA D,I¡, Iq

π the path corresponding to ρ. Futhermore, let Mpπq � l0, e1, . . . , en, ln be
the path corresponding to π on the original TA A defined as in (10.5). The
reduction core of A D,I¡ w.r.t. ρ is the reduction A D1,I1¡ where D1 �
tpe, ϕq | pe, ϕq P D^ e � ei for some 1 ¤ i ¤ nu and I1 � tpl, ϕq | pl, ϕq P

I ^ l � li for some 0 ¤ l ¤ nu.

Intuitively, the reduction core of A D,I¡ w.r.t. ρ reduces from A
only the simple clock constraints that appear on the witness path in
A.

Proposition 10.4. Let A D,I¡ be a sufficient reduction, ρ the witness of
reachability of LT on A D,I¡, and A D1,I1¡ the reduction core of A D,I¡

w.r.t. ρ. Then A D1,I1¡ is a sufficient reduction and A D1,I1¡ � A D,I¡.

Proof. By Definition 10.7, D1 � D and I1 � I, thus A D1,I1¡ �

A D,I¡. As for the sufficiency of A D1,I1¡, we only sketch the proof.
Intuitively, both A D,I¡ and A D1,I1¡ originate from A by only re-
moving some simple clock constraints (D Y I, and D1 Y I1, respec-
tively), i.e., the graph structure of A D,I¡ and A D1,I1¡ is the same,
however, some corresponding paths of A D,I¡ and A D1,I1¡ differ
in the constraints that appear on the paths. By Definition 10.7, the
path π that corresponds to the witness run ρ of A D,I¡ is also a
path of A D1,I1¡. Since realizability of a path depends only on the
constraints along the path, if π is realizable on A D,I¡ then π is also
realizable on A D1,I1¡.

Our approach for shrinking a sufficient reduction N is shown in
Algorithm 10.2. The algorithm iteratively maintains a sufficient re-
duction A D,I¡ and a set X of known critical constraints for A D,I¡.
Initially, A D,I¡ � N and X � H. In each iteration, the algorithm
picks a simple clock constraint c P pDY IqzX and checks the reduc-
tion A Dztcu,Iztcu¡ for sufficiency. If A Dztcu,Iztcu¡ is insufficient, the
algorithm adds c to X. Otherwise, if A Dztcu,Iztcu¡ is sufficient, the
algorithm obtains a witness run ρ of the sufficiency from the verifier
and reduces A D,I¡ to the corresponding reduction core. The algo-
rithm terminates when pD Y Iq � X. An invariant of the algorithm
is that every c P X is critical for A D,I¡. Thus, when pD Y Iq � X,
A D,I¡ is an MSR (Proposition 10.3).

176 minimal sets over a monotone predicate: enumeration and counting

1 while tN P RA |N R I ^@M1 PM. N � M1 ^ |N| � |M| � 1u � H do
2 N Ð pick from tN P RA |N R I ^@M1 PM. N � M1 ^ |N| � |M| � 1u
3 if N is sufficient then return N, I
4 else I Ð I Y tN1 P RA |N1 � enlargepNqu // Algorithm 10.4

5 return null, I

Algorithm 10.3: findSeedpM,M, Iq

Note that the algorithm also uses the set I of known insufficient
reductions. In particular, before calling a verifier to check a reduction
for sufficiency (line 4), the algorithm first checks (in a lazy manner)
whether the reduction is already known to be insufficient. Also,
whenever the algorithm determines a reduction A Dztcu,Iztcu¡ to be
insufficient, it adds A Dztcu,Iztcu¡ and every N, N � A Dztcu,Iztcu¡
to I (by Proposition 10.2, every such N is also insufficient).

10.2.3 Finding a Seed

We now describe the procedure findSeed. The input is the last iden-
tified MSR M, the set M of known MSRs, and the set I of known
insufficient reductions. The output is a seed, i.e., a sufficient reduc-
tion N such that |N| |M|, or null if there is no seed. Let us by CAND

denote the set of all candidates on a seed, i.e., CAND � tN P RA | |N|
|M|u. A brute-force approach would be to check individual reduc-
tions in CAND for sufficiency until a sufficient one is found, however,
this can be practically intractable since |CAND| �

°|M|
i�1

�|Ψp∆qYΨpInvq|
i�1

�
.

We provide three observations to prune the set CAND of candidates
that need to be tested for being a seed. The first observation exploits
the set I of already known insufficient reductions: no N P I can be
a seed. The second observation exploits the set M of already known
MSRs. By the definition of an MSR, for every M1 P M and every
N such that N � M1, the reduction N is necessarily insufficient and
hence cannot be a seed. The third observation is the following:

Proposition 10.5. For every sufficient reduction N P CAND there exists a
sufficient reduction N1 P CAND such that N � N1 and |N1| � |M| � 1.

Proof. If |N| � |M| � 1, then N � N1. For the other case, when
|N| |M| � 1, let N � A DN ,IN¡ and M � A DM ,IM¡. We construct
N1 � A DN1 ,IN1¡ by adding arbitrary p|M| � |N|q � 1 simple clock
constraint from pDM Y IMqzpDN Y INq to pDN Y INq, i.e., DN Y IN �

DN1
Y IN1

� pDM Y IM Y DN Y INq and |DN1
Y IN1

| � |M| � 1. By
definition of CAND, N1 P CAND. Moreover, since N � N1 and N is
sufficient, then N1 is also sufficient (Proposition 10.2).

Based on the above observations, we build a set C of indispensable
candidates on seeds that need to be tested for sufficiency:

C � tN P RA |N R I ^@M1 PM. N � M1 ^ |N| � |M| � 1u (10.6)

The procedure findSeed is shown in Algorithm 10.3. In each it-
eration, the algorithm picks a reduction N P C and checks it for

relaxing timed automata for reachability 177

1 foreach c P pΨp∆q YΨpInvqqzpDY Iq do
2 if c P Ψp∆q and A DYtcu,I¡ is sufficient then D Ð DY tcu
3 if c P ΨpInvq and A D,IYtcu¡ is sufficient then I Ð I Y tcu
4 return A D,I¡

Algorithm 10.4: enlargepA D,I¡q

sufficiency (via the verifier). If N is sufficient, the procedure returns
N as the seed. In the other case, when N is insufficient, the algorithm
first enlarges N into an insufficient reduction E such that N � E. By
Proposition 10.2, every reduction N1 such that N1 � E is also insuf-
ficient, thus all these reductions are added to I and hence removed
from C (note that this includes also N). If C becomes empty, then
there is no seed.

The purpose of enlarging N into E is to quickly prune the candi-
date set C. We could just add all the insufficient reductions tN1 |N1 �
Nu to I , but note that |tN1 |N1 � Eu| is exponentially larger than
|tN1 |N1 � Nu| w.r.t. |E| � |N|. We describe the enlargement of N in
Algorithm 10.4. Let N � A D,I¡. The algorithm attempts to one
by one add the constraints from Ψp∆qzD and ΨpInvqzI to D and I,
respectively, checking each emerged reduction for sufficiency, and
keeping only the changes that preserve A D,I¡ to be insufficient.
Note that the algorithm is based on the domain agnostic MSMP
growing procedure presented in Section 2.3.3, Algorithm 2.2.

10.2.4 Representation of I and C

The final piece of the puzzle is how to efficiently manipulate with
the sets I and C. In particular, we are adding reductions to I and
C, removing reductions from C, checking if a reduction belongs to I ,
checking if C is empty, and picking a reduction from C. The problem
is that the size of these sets can be exponential w.r.t. |Ψp∆q YΨpInvq|
(there are exponentially many reductions), and thus, it is practically
intractable to maintain the sets explicitly. Instead, we use a symbolic
representation that is based on the representation of unexplored sub-
sets via the formula map� ^map� (Section 2.3.2). Given a TA A with
simple clock constraints Ψp∆q � tpe1, ϕ1q, . . . , pep, ϕpqu and ΨpInvq �
tpl1, ϕ1q, . . . , plq, ϕqqu, we introduce two sets X � tx1, . . . , xpu and
Y � ty1, . . . , yqu of Boolean variables. Note that every valuation of
the variables X Y Y one-to-one maps to the reduction A D,I¡ such
that pei, ϕiq P D iff xi is assigned True and plj, ϕjq P I iff yj is assigned
True.

The set I is gradually build during the whole computation of
Algorithm 10.1. To represent the set I , we build a Boolean formula
I such that a reduction N belongs to I iff N does not correspond
to a model model of I. Initially, I � H, thus I � True. To add an
insufficient reduction A D,I¡ and all reductions N, N � A D,I¡, to
I , we add to I the clause p

�
pei ,ϕiqPΨp∆qzD xiq _ p

�
plj ,ϕjqPΨpInvqzI yjq.

178 minimal sets over a monotone predicate: enumeration and counting

To test if a reduction N is in the set I , we check if the valuation of
XYY that corresponds to N is not a model of I .

The set C is repeatedly build during each call of the procedure
findSeed based on Eq. 10.6 and it is encoded via a Boolean formula C

such that every model of C does correspond to a reduction N P C:

C � I^
©

A D,I¡PM
pp

ª
pei ,ϕiqPΨp∆qzD

xiq _ p
ª

plj ,ϕjqPΨpInvqzI

yjqq

^ truesp|M| � 1q

(10.7)

where truesp|M| � 1q is a cardinality encoding enforcing that exactly
|M| � 1 variables from X Y Y are set to True. To check if C � H or
to pick a reduction N P C, we ask a SAT solver for a model of C.
To remove an insufficient reduction from C, we update the formula
I (and thus also C) as described above.

10.2.5 Related Work

The concept of minimal sufficient reductions (MSRs) is novel in the
context of timed automata, and hence we proposed the first algo-
rithm tailored to the identification of a minimum MSR. However,
since MSRs are an instance of minimal sets over a monotone predi-
cate, there exist many MSMP identification/enumeration algorithms
that we could also apply. Perhaps the simplest solution is to use a
domain agnostic MSMP enumeration algorithm (e.g. the algorithms
MARCO, ReMUS and TOME discussed in Chapter 4) to enumerate all
MSRs, and then select a one with the minimum cardinality. However,
since there can be up to exponentially many MSRs, this approach
might be very inefficient or even practically intractable.

There have been proposed several algorithms for extracting a min-
imum MSMP for particular instances of MSMPs, mainly for extract-
ing a minimum minimal unsatisfiable subset (MUS) of a given CNF
formula [Ignatiev et al., 2015, Liffiton et al., 2009, Ignatiev et al.,
2016]. All these algorithms can be in some extent generalized and
applied also for finding a minimum MSR. However, since the algo-
rithms are dedicated to the particular instances of MSMP and exten-
sively exploit specific properties of the instances (such as we exploit
reduction cores in case of MSRs), they would be rather inefficient
for our use case. Worth of a more detailed discussion is an algo-
rithm [Ignatiev et al., 2015] for extraction of a minimum MUS that is
based on the minimal hitting set duality between MUSes and mini-
mal correction subsets (MCSes). The algorithm gradually maintains
a set kMCSes of known MCSes; initially kMCes � H. In each itera-
tion, the algorithm computes a minimum minimal hitting H set of
kMCSes and checks H for satisfiability. If H is unsatisfiable then it
is guaranteed to be a minimum MUS and the algorithm terminates.
Otherwise, H is grown to a maximal satisfiable subset whose com-
plement is an MCS, thus kMCSes is enlarged, and the algorithm con-
tinues with a next iteration. Since this duality between MUSes and
MCSes applies for MSMPs in general (Observation 2.6), the base idea

relaxing timed automata for reachability 179

of their algorithm can be straightforwardly used also for extracting a
minimum MSR. However, the disadvantage of their approach is that
they either identify the minimum MUS (MSR) within a given time
limit or they identify no MUS (MSR) at all. On the other hand, our
algorithm gradually identifies a sequence of MSRes such that each
identified MSR is smaller than the previous one. Hence, if finding
a minimum MSR is practically intractable, we can often provide at
least a non-minimum MSR, which can still be used to relax the input
TA A in a reasonable way.

10.3 Synthesis of Relaxation Parameters

The main objective of this study is to make the target locations LT

of a given TA A � pL, l0, C, ∆, Invq reachable by only modifying the
constants of simple constraints of A. In the previous section, we pre-
sented an efficient algorithm to find a set of simple clock constraints
D � Ψp∆q (10.1) (over transitions) and I � ΨpInvq (10.2) (over loca-
tions) such that the target set is reachable when constraints D and
I are removed from A. In other words, LT is reachable on A D,I¡.
Consequently, a verifier (model-checker) generates a finite run

ρ1LT
� pl0, 0qÑd0pl1, v1qÑd1 . . .Ñdn�1pln, vnq

of A D,I¡ such that ln P LT . Let

π1LT
� l0, e11, l1, . . . , e1n�1, ln

be the corresponding path of A D,I¡, i.e., the path π1LT
is realizable

on A D,I¡ due to the delay sequence d0, d1, . . . , dn�1 and the result-
ing run is ρ1LT

. The corresponding path on the original TA A defined
as in (10.5) is the following:

π1LT
� MpπLT q, and πLT � l0, e1, l1, . . . , en�1, ln (10.8)

While π1LT
is realizable on A D,I¡, πLT is not realizable on A since

LT is not reachable on A. We present a MILP based method to find a
relaxation valuation r : DY I Ñ NYt8u such that the path induced
by πLT is realizable on A D,I,r¡.

For a given automaton path π � l0, e1, l1, . . . , en�1, ln with ei �

pli�1, λi, φi, liq for each i � 1, . . . , n�1, we introduce real valued delay
variables δ0, . . . , δn�1 that represent the time spent in each location
along the path. Since clocks measure the time passed since their last
resets, for a fixed path, a clock on a given constraint (invariant or
guard) can be mapped to a sum of delay variables:

Γpx, π, iq � δk � δk�1 � . . .� δi�1

where k � maxptm | x P λm, m iu Y t0uq
(10.9)

The value of clock x equals to Γpx, π, iq on the i-th transition ei along
π. In (10.9), k is the index of the transition where x is last reset before
ei along π, and it is 0 if it is not reset. Γp0, π, iq is defined as 0 for
notational convenience.

180 minimal sets over a monotone predicate: enumeration and counting

Guards. For transition ei, each simple constraint ϕ � x � y � c P
Spφiq on the guard φi is mapped to the new delay variables as:

Γpx, π, iq � Γpy, π, iq � c� pei ,ϕ (10.10)

where pei ,ϕ is a new integer valued relaxation variable if pei, ϕq P D,
otherwise it is set to 0.

Invariants. Each simple clock constraint ϕ � x� y � c P SpInvpliqq
of the invariant of location li is mapped to arriving (10.11) and leav-
ing (10.12) constraints over the delay variables, since the invariant
should be satisfied when arriving (i.e. lower bounds) and leaving
(i.e. upper bounds) the location:

Γpx, π, iq � Ipx R λiq � Γpy, π, iq � Ipy R λiq � c� pli ,ϕi
i f i ¡ 0

(10.11)

Γpx, π, i� 1q � Γpy, π, i� 1q � c� pli ,ϕi
(10.12)

where I is a binary function mapping true to 1 and f alse to 0, pli ,ϕi
is

a new integer valued variable if pli, ϕiq P I, otherwise it is set to 0.
Finally, we define a MILP (10.13) for the path π. The constraint

relaxation variables tpl,ϕ | pl, ϕq P Iu and tpe,ϕ | pe, ϕq P Du (inte-
ger valued), and the delay variables δ0, . . . , δn�1 (real valued) are the
decision variables of the MILP.

minimize
¸
pl,ϕqPI

pl,ϕ �
¸

pe,ϕqPD

pe,ϕ (10.13)

subject to (10.10) for each i � 1, . . . , n� 1, and x� y � c P Spφiq

(10.11) for each i � 1, . . . , n, and x� y � c P SpInvpliqq

(10.12) for each i � 0, . . . , n� 1, and x� y � c P SpInvpliqq

pl,ϕ P Z� for each pl, ϕq P I,

and pe,ϕ P Z� for each pe, ϕq P D

Let tp�l,ϕ | pl, ϕq P Iu, tp�e,ϕ | pe, ϕq P Du, and δ�0 , . . . , δ�n�1 denote the
solution of MILP (10.13) when one exists. We define a relaxation
valuation r with respect to the solution as

rpl, ϕq � p�l,ϕ for each pl, ϕq P I, rpe, ϕq � p�e,ϕ for each pe, ϕq P D.
(10.14)

Proposition 10.6. Let A � pL, l0, C, ∆, Invq be a timed automaton, π �

l0, e1, l1, . . . , en, ln be a finite path of A, and D � Ψp∆q, I � ΨpIq be guard
and invariant constraint sets. If the MILP constructed from A, π, D and I
as defined in (10.13) is feasible, then ln is reachable on A D,I,r¡ with r as
defined in (10.14).

Proof. Let us denote the optimal solution of MILP (10.13) by tp�l,ϕ |
pl, ϕq P Iu, tp�e,ϕ | pe, ϕq P Du, and δ�0 , . . . , δ�n�1. For simplicity of
presentation, let us set p�l,ϕ to 0 for each pl, ϕq P ΨpInvqzI and set
p�e,ϕ to 0 for each pe, ϕq P Ψp∆qzD. Let A D,I,r¡ � pL, l0, C, ∆1, Inv1q
and TpA D,I,r¡q � pS, s0, Σ,Ñq. We define clock value sequence

relaxing timed automata for reachability 181

v0, v1, . . . , vn with respect to the path π with ei � pli�1, λi, φi, liq
and the delay sequence δ�0 , . . . , δ�n�1 iteratively as v0 � 0 and vi �

pvi�1 � δ�i�1qrλi :� 0s for each i � 1, . . . , n. Along the path π, vi is
consistent with Γp�, π, iq (10.9) such that

aq vipxq � Γpx, π, iq.Ipx R λiq and bq vipxq � δ�i � Γpx, π, i� 1q
(10.15)

For a simple constraint ϕ � x � y � c � p�li ,ϕ P Inv1pliq (i.e. x �
y � c P Invpliq via Definition. 10.4 and (10.14)), it holds that vipxq �
vipyq � c� p�li ,ϕ via (10.11) and (10.15)-a. Then by (10.14) vi |ù Inv1pliq
and pli, viq P S. Similarly, vi � δ�i |ù Inv1pliq via (10.12) and (10.15)-b.

Hence, pli, vi � δ�i q P S and pli, viq
δ�iÑ pli, vi � δ�i q (delay transition).

Furthermore, by (10.10), (10.14), (10.15)-b and Definition. 10.4, we
have vi � δ�i |ù Rpφi, D|ei , r|eiq and pli, vi � δ�i q

act
Ñ pli�1, vi�1q (discrete

transition). As s0 � pl0, 0q P S, and the derivation applies to each
i � 1, . . . , n, we reach that ρ � pl0, v0q, . . . , pln, vnq P rrA D,I,r¡ss, and
ln is reachable on A D,I,r¡.

Note that in [Bouyer et al., 2007], a linear programming (LP) based
approach was used to generate the optimal delay sequence for a
given path of a weighted timed automata. In our case, the opti-
mization problem is in MILP form since we find an integer valued
relaxation valuation (r) in addition to the delay variables.

Recall that we construct relaxation sets D and I via Algorithm 10.1,
and define πLT (10.8) that reach LT such that the corresponding path
π1LT

is realizable on A D,I¡. Then, we define MILP (10.13) with re-
spect to πLT , D and I, and define r (10.14) according to the optimal
solution. Note that this MILP is always feasible since π1LT

is realiz-
able on A D,I¡. Finally, by Proposition 10.6, we conclude that LT is
reachable on A D,I,r¡.

Example 10.3. For the TA shown in Figure 10.1, Algorithm 10.1 gener-
ates A D,I¡ with D � tpe5, x ¥ 25qu and I � tpl3, u ¤ 26qu such that
π � l0, e1, l1, e2, l2, e3, l1, e4, l3, e5, l4 is realizable on A D,I¡. The MILP
is constructed for π, D and I with decision variables pe5,x¥25, pl3,u¤26,
δ0, δ1, δ2, δ3, δ4 and δ5 as in (10.13). The solution is pe5,x¥25 � 3, pl3,u¤26 �

5, and the delay sequence is 9, 4, 0, 9, 9, 0. Consequently, l4 is reachable on
A D,I,r¡ with rpe5, x ¥ 25q � 3 and rpl3, u ¤ 26q � 5.

10.4 Case Study

We implemented the proposed reduction and relaxation methods in
a tool called Tamus. We use UPPAAL for sufficiency checks and
witness computation, and CBC solver from Or-tools library2 for the 2 https://developers.google.com/

optimizationMILP part. All experiments were run on a laptop with Intel i5 quad
core processor at 2.5 GHz and 8 GB ram. The tool and used bench-
marks are available at:

https://github.com/jar-ben/tamus

As discussed in Section 10, an alternative approach to solve our
problem (Problem 10.1) is to parameterize each simple clock con-

https://developers.google.com/optimization
https://developers.google.com/optimization
https://github.com/jar-ben/tamus

182 minimal sets over a monotone predicate: enumeration and counting

Model |Ψ| d v t cm Model |Ψ| d v t cm Model |Ψ| d v t cm

Ap3,1,12q 11 2 33 0.18 6 Ap5,1,12q 16 3 120 0.63 10 Ap7,1,12q 19 3 120 0.63 11

Ap3,2,12q 17 1 13 0.13 13 Ap5,2,12q 24 1 42 0.35 13 Ap7,2,12q 28 1 95 0.72 13

Ap3,1,18q 16 3 61 0.37 9 Ap5,1,18q 23 4 149 0.90 16 Ap7,1,18q 28 5 313 1.87 25

Ap3,2,18q 24 1 40 0.40 6 Ap5,2,18q 35 1 57 0.58 6 Ap7,2,18q 42 1 70 0.74 6

Ap3,1,24q 21 4 97 0.65 12 Ap5,1,24q 31 6 327 2.16 24 Ap7,1,24q 38 7 709 4.76 35

Ap3,2,24q 32 1 80 0.85 16 Ap5,2,24q 47 2 169 1.80 31 Ap7,2,24q 57 2 201 2.21 21

Ap3,1,30q 26 5 141 1.05 15 Ap5,1,30q 39 7 541 4.17 31 Ap7,1,30q 48 10 1680 14.12 47

Ap3,2,30q 40 1 65 0.84 9 Ap5,2,30q 59 2 330 3.95 14 Ap7,2,30q 72 2 403 5.01 14

Table 10.1: Results for the
scheduler TA, where |Ψ| �

|Ψp∆q Y ΨpIq| is the total num-
ber of constraints, d � |D Y

U| is the minimum MSR size,
v is the number of reachabil-
ity checks, t is the computation
time in seconds, and cm is the
optimal cost of (10.13).

straint of the TA. Then, we can run a parameter synthesis tool on
the parameterized TA to identify the set of all possible valuations of
the parameters for which the TA satisfies the reachability property.
Subsequently, we can choose the valuations that assign non-zero val-
ues (i.e., relax) to the minimum number of parameters, and out of
these, we can choose the one with a minimum cumulative change
of timing constants. In our experimental evaluation, we evaluate a
state-of-the-art parameter synthesis tool called Imitator[André et al.,
2012] to run such analysis. Although Imitator is not tailored for our
problem, it allows us to measure the relative scalability of our ap-
proach compared to a well-established synthesis technique.

We used two collections of benchmarks: one is obtained from the
literature, and the other are crafted timed automata modeling a ma-
chine scheduling problem. All experiments were run using a time
limit of 20 minutes per benchmark. Complete results are available in
the online appendix3. 3 https://www.fi.muni.cz/~xbendik/

phdThesis/

10.4.1 Machine Scheduling

A scheduler automaton is composed of a set of paths from location l0
to location l1. Each path π � l0eklkek�1 . . . lk�M�1ek�Ml1 represents
a particular scheduling scenario where an intermediate location, e.g.
li for i � k, . . . , k � M � 1, belongs to a unique path (only one in-
coming and one outgoing transition). Thus, a TA that has p paths
with M intermediate locations in each path has M � p � 2 locations
and pM � 1q � p transitions. Each intermediate location represents
a machine operation, and periodic simple clock constraints are in-
troduced to mimic the limitations on the corresponding durations.
For example, assume that the total time to use machines represented
by locations lk�i and lk�i�1 is upper (or lower) bounded by c for
i � 0, 2, . . . , M � 2. To capture such a constraint with a period of
t � 2, a new clock x is introduced and it is reset and checked on every
tth transition along the path, i.e., for every m P ti � t� k | i � t ¤ M� 1u,
let em � plm, λm, φm, lm�1q, add x to λm, set φm :� φm ^ x ¤ c (x ¥ c
for lower bound). A periodic constraint is denoted by pt, c,�q, where
t is its period, c is the timing constant, and �P t ,¤,¡,¥u. A set of
such constraints are defined for each path to capture possible restric-

https://www.fi.muni.cz/~xbendik/phdThesis/
https://www.fi.muni.cz/~xbendik/phdThesis/

relaxing timed automata for reachability 183

tions. In addition, a bound T on the total execution time is captured
with the constraint x ¤ T on transition ek�M over a clock x that is not
reset on any transition. A realizable path to l1 represents a feasible
scheduling scenario, thus the target set is LT � tl1u. We have gener-
ated 24 test cases. A test case Apc,p,Mq represents a timed automaton
with c P t3, 5, 7u clocks, and p P t1, 2u paths with M P t12, 18, 24, 30u
intermediate locations in each path. Rc,i is the set of periodic restric-
tions defined for the ith path of an automaton with c clocks:

R3,1 � tp2, 11,¥q, p3, 15,¤qu

R5,1 � R3,1 Y tp4, 21,¥q, p5, 25,¤qu

R7,1 � R5,1 Y tp6, 31,¥q, p7, 35,¤qu

R3,2 � tp4, 17,¥q, p5, 20,¤qu

R5,2 � R3,2 Y tp8, 33,¥q, p9, 36,¤qu

R7,2 � R5,2 Y tp12, 49,¥q, p12, 52,¤qu

Note that Apc,2,Mq emerges from Apc,1,Mq by adding a path with
restrictions Rc,2.

Table 10.1 shows results achieved by Tamus on these machine
scheduling models. Tamus solved all models and the hardest one
Ap7,1,30q took only 14.12 seconds. As expected, the computation time
t increases with the number |Ψ| of simple clock constraints in the
model. Moreover, the computation time highly correlates with the
size d of the minimum MSR. Especially, if we compare two generic
models Apc,1,Mq and Apc,2,Mq, although Apc,2,Mq has one more path
and more constraints, Tamus is faster on Apc,2,Mq since it quickly
converges to the path with smaller MSRs.

Imitator solved Ap3,1,12q, Ap3,2,12q, Ap3,1,18q, and Ap5,1,12q within
0.08, 0.5, 61, and 67 seconds, and timeouted for the other models.
In addition, we run Imitator with a flag “counterexample” that ter-
minates the computation when a satisfying valuation is found. The
use of this flag reduced the computation time for the afore mentioned
cases, and it allowed to solve two more models: Ap3,2,18q and Ap5,2,12q.
However, using this flag, Imitator often did not provided a solution
that minimizes the number of relaxed simple clock constraints.

10.4.2 Benchmarks from the Literature

We collected 10 example models from the literature shown in Ta-
ble 10.2. The examples include models with a safety specification
that requires avoiding a set of locations LA, and models with a reach-
ability specification with a set of target locations LT as considered in
this chapter. In both cases, the original models satisfy the given spec-
ification. For the first case, we define LA as the target set and apply
our method. Here, we find the minimal number of timing constants
that should be changed to reach LA, i.e., to violate the original safety
specification. As such, the proposed approach can be used to an-
alyze robustness for the safety specifications. For the second case,

184 minimal sets over a monotone predicate: enumeration and counting

Model Source
accel1000 [André et al., 2018][Hoxha et al., 2014]

CAS [Aichernig et al., 2013]
coffee [André et al., 2019c]

Jobshop4 [Abdeddaïm and Maler, 2001]
Pipeline3-3 [Knapik and Penczek, 2012]

RCP [Collomb-Annichini and Sighireanu, 2001]
SIMOP3 [André et al., 2009]
Fischer [Hune et al., 2002]

JLR13-3tasks [Jovanovic et al., 2013][André et al., 2015]
WFAS [Beneš et al., 2015][Arenis et al., 2014]

Table 10.2: Source of the bench-
marks from the literature.

inspired from mutation testing [Aichernig et al., 2013], we change
a number of constraints on the original model so that LT becomes
unreachable. Eight of the examples are networks of TAs, and while
a network of TAs can be represented as a single product TA and
hence our approach can handle it, Tamus currently supports only
MSR computation for networks of TA, but not MILP relaxation.

The results are shown in Table 10.3. Tamus computed a minimum
MSR for all the models and also provided the MILP relaxation for the
non-network models. Note that the MILP part always took only few
milliseconds (including models from Table 10.1), thus we believe that
it would be also the case for the networks of TAs. The base variant of
Imitator that computes the set of all satisfying parameter valuations
solved only 4 of the 10 models. When run with the early termination
flag, Imitator solved 3 more models, however, as discussed above, the
provided solutions might not be optimal. We have also evaluated a
combination of Tamus and Imitator. In particular, we first run Tamus
to compute a minimum MSR A D,I¡, then parameterized the con-
straints DY I, and run Imitator on the parameterized TA. In this case,
Imitator solved 9 out of 10 models. Moreover, we have the guarantee
that we found the optimal solution: the MSR ensures that we relax
the minimum number of simple clock constraints, and Imitator finds
all satisfying parameterizations of the constraints hence also the one
with minimum cumulative change of timing constants.

10.5 Summary and Future Work

In this chapter, we proposed the novel concept of a minimum MSR
for a TA, that is a minimum set of simple constraints that needs
to be relaxed to satisfy a reachability specification. We developed
efficient methods to find a minimum MSR, and presented a MILP
based solution to tune these constraints. Our analysis on benchmarks
showed that our tool Tamus can generate a minimum MSR within
seconds even for large systems. In addition, we compared our results
with Imitator and observed that Tamus scales much better. However,
Tamus minimizes the cumulative change of the constraints from a
minimum MSR by considering a single witness path. If the goal is
to find a minimal relaxation globally, i.e., w.r.t. all witness paths for

relaxing timed automata for reachability 185

Model Spec. |Ψ| |Ψu| d m v t cm tI tIT tIc tITc

accel1000 reachability 7690 13 2 3 22 1.83 - 182.5 2.08 1.77 1.03

CAS reachability 18 18 2 9 46 0.31 14 0.75 0.11 0.09 0.01

coffee reachability 10 10 2 3 18 0.07 14 0.008 0.002 0.007 0.003

Jobshop4 reachability 64 48 5 5 272 1.99 - to 949.5 to 942.3
Pipeline3-3 reachability 41 41 1 12 42 0.37 - to 0.08 to 0.05

RCP reachability 48 48 1 11 19 0.41 - to 0.02 24.23 0.02

SIMOP3 reachability 80 80 6 40 903 10.65 - to 7.26 to 0.49

Fischer safety 24 16 1 0 14 0.08 - to to 0.21 0.01

JLR13-3tasks safety 42 36 1 0 40 0.41 - to 2.60 0.05 0.08

WFAS safety 32 24 1 0 10 0.08 - 16.20 0.01 0.03 0.006

Table 10.3: Experimental re-
sults for the benchmarks, where
|Ψ|, d, v t and cm are as de-
fined in Table 10.1, |Ψu| is the
number of constraints consid-
ered in the analysis and m is
the number of mutated con-
straints. tI , tIT , tIc and tITc

are the Imitator computation
times, where c indicates that the
early termination flag (“coun-
terexample”) is used, other-
wise the largest set of param-
eters is searched, and T indi-
cates that only the constraints
from the MSR identified by
Tamus are parametrized, oth-
erwise all constraints from Ψu

are parametrized. to shows that
the timeout limit is reached (20

min.).

the MSR, we recommend to use the combined version of Tamus and
Imitator, i.e., first run Tamus to find a minimum MSR, parametrize
each constraint from the MSR and run Imitator to find all satisfying
parameter valuations, including the global optimum.

There are several directions for the future work. One of them is
to implement the support for MILP computation over networks of
timed automata. Another interesting direction is to examine how
our approach applies to robustness analysis. In the experimental
evaluation, we have already suggested that MSRs can be also used
to identify the minimum set of simple clock constraints that need to
be removed from the system to violate a safety property. Dually, one
might think of a minimum set of simple clock constraints that need
to be left in the system to satisfy a safety property.

Bibliography

Yasmina Abdeddaïm and Oded Maler. Job-shop scheduling using
timed automata. In CAV, volume 2102 of LNCS, pages 478–492.
Springer, 2001.

Bernhard K. Aichernig, Florian Lorber, and Dejan Nickovic. Time for
mutants - model-based mutation testing with timed automata. In
TAP@STAF, volume 7942 of LNCS, pages 20–38. Springer, 2013.

Rajeev Alur. Timed automata. In CAV, volume 1633 of LNCS, pages
8–22. Springer, 1999.

Rajeev Alur and David L. Dill. A theory of timed automata. Theor.
Comput. Sci., 126(2):183–235, 1994.

Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah. CEGAR-
based formal hardware verification: A case study. Technical report,
University of Michigan, CSE-TR-531-07, 2007.

Zaher S. Andraus, Mark H. Liffiton, and Karem A. Sakallah. Reveal:
A formal verification tool for verilog designs. In LPAR, volume
5330 of LNCS, pages 343–352. Springer, 2008.

Étienne André. A benchmark library for parametric timed model
checking. In FTSCS, volume 1008 of Communications in Computer
and Information Science, pages 75–83. Springer, 2018.

Étienne André. What’s decidable about parametric timed automata?
Int. J. Softw. Tools Technol. Transf., 21(2):203–219, 2019.

Étienne André, Thomas Chatain, Olivier De Smet, Laurent Fribourg,
and Silvain Ruel. Synthèse de contraintes temporisées pour une
architecture d’automatisation en réseau. Journal Européen des Sys-
tèmes Automatisés, 43, 2009.

Étienne André, Laurent Fribourg, Ulrich Kühne, and Romain Soulat.
IMITATOR 2.5: A tool for analyzing robustness in scheduling
problems. In FM, volume 7436 of LNCS, pages 33–36. Springer,
2012.

Étienne André, Giuseppe Lipari, Hoang Gia Nguyen, and Youcheng
Sun. Reachability preservation based parameter synthesis for
timed automata. In NFM, volume 9058 of LNCS, pages 50–65.
Springer, 2015.

188 minimal sets over a monotone predicate: enumeration and counting

Étienne André, Ichiro Hasuo, and Masaki Waga. Offline timed pat-
tern matching under uncertainty. In ICECCS, pages 10–20. IEEE
Computer Society, 2018.

Étienne André, Paolo Arcaini, Angelo Gargantini, and Marco Radav-
elli. Repairing timed automata clock guards through abstraction
and testing. In TAP@FM, volume 11823 of LNCS, pages 129–146.
Springer, 2019a.

Étienne André, Laurent Fribourg, Jean-Marc Mota, and Romain
Soulat. Verification of an industrial asynchronous leader election
algorithm using abstractions and parametric model checking. In
VMCAI, volume 11388 of LNCS, pages 409–424. Springer, 2019b.

Étienne André, Michal Knapik, Didier Lime, Wojciech Penczek, and
Laure Petrucci. Parametric verification: An introduction. Trans.
Petri Nets Other Model. Concurr., 14:64–100, 2019c.

Sergio Feo Arenis, Bernd Westphal, Daniel Dietsch, Marco Muñiz,
and Ahmad Siyar Andisha. The wireless fire alarm system: En-
suring conformance to industrial standards through formal veri-
fication. In FM, volume 8442 of LNCS, pages 658–672. Springer,
2014.

M. Fareed Arif, Carlos Mencía, and João Marques-Silva. Efficient
axiom pinpointing with EL2MCS. In KI, volume 9324 of LNCS,
pages 225–233. Springer, 2015a.

M. Fareed Arif, Carlos Mencía, and João Marques-Silva. Efficient
MUS enumeration of Horn formulae with applications to ax-
iom pinpointing. In SAT, volume 9340 of LNCS, pages 324–342.
Springer, 2015b.

M. Fareed Arif, Carlos Mencía, Alexey Ignatiev, Norbert Manthey,
Rafael Peñaloza, and João Marques-Silva. BEACON: an efficient
sat-based tool for debugging EL+ ontologies. In SAT, volume 9710

of LNCS, pages 521–530. Springer, 2016.

Gilles Audemard and Laurent Simon. Predicting learnt clauses qual-
ity in modern SAT solvers. In IJCAI, pages 399–404, 2009.

Rehan Abdul Aziz, Geoffrey Chu, Christian J. Muise, and Peter J.
Stuckey. #Dsat: Projected model counting. In SAT, volume 9340 of
LNCS, pages 121–137. Springer, 2015.

Fahiem Bacchus and George Katsirelos. Using minimal correction
sets to more efficiently compute minimal unsatisfiable sets. In CAV
(2), volume 9207 of LNCS, pages 70–86. Springer, 2015.

Fahiem Bacchus and George Katsirelos. Finding a collection of
MUSes incrementally. In CPAIOR, volume 9676 of LNCS, pages
35–44. Springer, 2016.

bibliography 189

Fahiem Bacchus, Jessica Davies, Maria Tsimpoukelli, and George
Katsirelos. Relaxation search: A simple way of managing optional
clauses. In AAAI, pages 835–841. AAAI Press, 2014.

John Backes, Darren D. Cofer, Steven P. Miller, and Michael W.
Whalen. Requirements analysis of a quad-redundant flight con-
trol system. In NFM, volume 9058 of LNCS, pages 82–96. Springer,
2015.

James Bailey and Peter J. Stuckey. Discovery of minimal unsatisfiable
subsets of constraints using hitting set dualization. In PADL, pages
174–186. Springer, 2005.

R. R. Bakker, F. Dikker, F. Tempelman, and P. M. Wognum. Diagnos-
ing and solving over-determined constraint satisfaction problems.
In IJCAI, pages 276–281. Morgan Kaufmann, 1993.

Teodora Baluta, Shiqi Shen, Shweta Shinde, Kuldeep S. Meel, and
Prateek Saxena. Quantitative verification of neural networks and
its security applications. In ACM Conference on Computer and Com-
munications Security, pages 1249–1264. ACM, 2019.

Jiří Barnat, Petr Bauch, and Luboš Brim. Checking sanity of software
requirements. In SEFM 2012 Proceedings, volume 7504 of LNCS,
pages 48–62. Springer, 2012.

Jiří Barnat, Petr Bauch, Nikola Beneš, Luboš Brim, Jan Beran, and
Tomáš Kratochvíla. Analysing sanity of requirements for avionics
systems. FAoC, pages 1–19, 2016.

Clark W. Barrett, Christopher L. Conway, Morgan Deters, Liana
Hadarean, Dejan Jovanovic, Tim King, Andrew Reynolds, and Ce-
sare Tinelli. CVC4. In CAV, volume 6806 of LNCS, pages 171–177.
Springer, 2011.

Roberto J. Bayardo Jr. and Joseph Daniel Pehoushek. Counting mod-
els using connected components. In AAAI/IAAI, pages 157–162.
AAAI Press / The MIT Press, 2000.

Gerd Behrmann, Alexandre David, Kim Guldstrand Larsen, John
Håkansson, Paul Pettersson, Wang Yi, and Martijn Hendriks. UP-
PAAL 4.0. In QEST, pages 125–126. IEEE Computer Society, 2006.

Anton Belov and João Marques-Silva. Accelerating MUS extraction
with recursive model rotation. In FMCAD, pages 37–40. FMCAD
Inc., 2011.

Anton Belov and João Marques-Silva. MUSer2: An efficient MUS
extractor. JSAT, 8:123–128, 2012.

Anton Belov, Marijn Heule, and João Marques-Silva. MUS extraction
using clausal proofs. In SAT, volume 8561 of LNCS, pages 48–57.
Springer, 2014.

190 minimal sets over a monotone predicate: enumeration and counting

Rachel Ben-Eliyahu and Rina Dechter. On computing minimal mod-
els. In AAAI, pages 2–8. AAAI Press / The MIT Press, 1993.

Jaroslav Bendík. Consistency checking in requirements analysis. In
ISSTA, pages 408–411. ACM, 2017.

Jaroslav Bendík and Ivana Černá. Evaluation of domain agnostic
approaches for enumeration of minimal unsatisfiable subsets. In
LPAR, volume 57 of EPiC Series in Computing, pages 131–142. Easy-
Chair, 2018.

Jaroslav Bendík and Ivana Černá. MUST: minimal unsatisfiable sub-
sets enumeration tool. In TACAS (1), volume 12078 of LNCS, pages
135–152. Springer, 2020a.

Jaroslav Bendík and Ivana Černá. Rotation based MSS/MCS enu-
meration. In LPAR, volume 73 of EPiC Series in Computing, pages
120–137. EasyChair, 2020b.

Jaroslav Bendík and Ivana Černá. Replication-guided enumeration
of minimal unsatisfiable subsets. In CP, volume 12333 of LNCS,
pages 37–54. Springer, 2020c.

Jaroslav Bendík and Kuldeep S. Meel. Approximate counting of min-
imal unsatisfiable subsets. In CAV (1), volume 12224 of LNCS,
pages 439–462. Springer, 2020.

Jaroslav Bendík and Kuldeep S. Meel. Counting maximal satisfiable
subsets. In AAAI, pages 3651–3660. AAAI Press, 2021.

Jaroslav Bendík, Nikola Beneš, Jiří Barnat, and Ivana Černá. Finding
boundary elements in ordered sets with application to safety and
requirements analysis. In SEFM, volume 9763 of LNCS, pages 121–
136. Springer, 2016a.

Jaroslav Bendík, Nikola Beneš, Ivana Černá, and Jiří Barnat. Tunable
online MUS/MSS enumeration. In FSTTCS, volume 65 of LIPIcs,
pages 50:1–50:13. Schloss Dagstuhl - Leibniz-Zentrum fuer Infor-
matik, 2016b.

Jaroslav Bendík, Nikola Beneš, and Ivana Černá. Finding regressions
in projects under version control systems. In ICSOFT, pages 186–
197. SciTePress, 2018a.

Jaroslav Bendík, Ivana Černá, and Nikola Beneš. Recursive online
enumeration of all minimal unsatisfiable subsets. In ATVA, volume
11138 of LNCS, pages 143–159. Springer, 2018b.

Jaroslav Bendík, Elaheh Ghassabani, Michael W. Whalen, and Ivana
Černá. Online enumeration of all minimal inductive validity cores.
In SEFM, volume 10886 of LNCS, pages 189–204. Springer, 2018c.

Jaroslav Bendík, Ahmet Sencan, Ebru Aydin Gol, and Ivana Cerná.
Timed automata relaxation for reachability. In TACAS (1), volume
12651 of LNCS, pages 291–310. Springer, 2021.

bibliography 191

Nikola Beneš, Peter Bezděk, Kim Guldstrand Larsen, and Jiří Srba.
Language emptiness of continuous-time parametric timed au-
tomata. In ICALP (2), volume 9135 of LNCS, pages 69–81. Springer,
2015.

Peter Bezděk, Nikola Beneš, Jiří Barnat, and Ivana Černá. LTL pa-
rameter synthesis of parametric timed automata. In SEFM, volume
9763 of LNCS, pages 172–187. Springer, 2016.

Peter Bezděk, Nikola Beneš, Ivana Černá, and Jiří Barnat. On clock-
aware LTL parameter synthesis of timed automata. J. Log. Algebraic
Methods Program., 99:114–142, 2018.

Armin Biere. Cadical, lingeling, plingeling, treengeling and yalsat
entering the sat competition 2018. Proc. of SAT Competition, pages
13–14, 2018.

Fabrizio Biondi, Michael A. Enescu, Annelie Heuser, Axel Legay,
Kuldeep S. Meel, and Jean Quilbeuf. Scalable approximation of
quantitative information flow in programs. In VMCAI, volume
10747 of LNCS, pages 71–93. Springer, 2018.

Elazar Birnbaum and Eliezer L. Lozinskii. The good old davis-
putnam procedure helps counting models. J. Artif. Intell. Res., 10:
457–477, 1999.

Bernard Blackham, Mark H. Liffiton, and Gernot Heiser. Trickle: Au-
tomated infeasible path detection using all minimal unsatisfiable
subsets. In RTAS, pages 169–178. IEEE Computer Society, 2014.

Béla Bollobás, Christian Borgs, Jennifer T. Chayes, Jeong Han Kim,
and David Bruce Wilson. The scaling window of the 2-SAT transi-
tion. Random Struct. Algorithms, 18(3):201–256, 2001.

Patricia Bouyer, Thomas Brihaye, Véronique Bruyère, and Jean-
François Raskin. On the optimal reachability problem of weighted
timed automata. Formal Methods in System Design, 31:135–175, 2007.

Roberto Cavada, Alessandro Cimatti, Michele Dorigatti, Alberto
Griggio, Alessandro Mariotti, Andrea Micheli, Sergio Mover,
Marco Roveri, and Stefano Tonetta. The nuXmv symbolic model
checker. In CAV, volume 8559 of LNCS, pages 334–342. Springer,
2014.

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. A scal-
able approximate model counter. In CP, volume 8124 of LNCS,
pages 200–216. Springer, 2013.

Supratik Chakraborty, Daniel J. Fremont, Kuldeep S. Meel, Sanjit A.
Seshia, and Moshe Y. Vardi. Distribution-aware sampling and
weighted model counting for SAT. In AAAI, pages 1722–1730.
AAAI Press, 2014.

192 minimal sets over a monotone predicate: enumeration and counting

Supratik Chakraborty, Kuldeep S. Meel, and Moshe Y. Vardi. Al-
gorithmic improvements in approximate counting for probabilistic
inference: From linear to logarithmic SAT calls. In IJCAI, pages
3569–3576. IJCAI/AAAI Press, 2016.

Huan Chen and João Marques-Silva. Improvements to satisfiability-
based boolean function bi-decomposition. In VLSI-SoC, pages 142–
147. IEEE, 2011.

Zhi-Zhong Chen and Seinosuke Toda. The complexity of selecting
maximal solutions. Inf. Comput., 119(2):231–239, 1995.

John W. Chinneck and Erik W. Dravnieks. Locating minimal infeasi-
ble constraint sets in linear programs. INFORMS J. Comput., 3(2):
157–168, 1991.

Hana Chockler, Orna Kupferman, and Moshe Y. Vardi. Coverage
metrics for formal verification. Int. J. Softw. Tools Technol. Transf., 8

(4-5):373–386, 2006.

Jürgen Christ, Jochen Hoenicke, and Alexander Nutz. SMTInterpol:
An interpolating SMT solver. In SPIN, volume 7385 of LNCS, pages
248–254. Springer, 2012.

Alessandro Cimatti, Alberto Griggio, and Roberto Sebastiani. Com-
puting small unsatisfiable cores in satisfiability modulo theories.
JAIR, 40:701–728, 2011.

Alessandro Cimatti, Alberto Griggio, Bastiaan Joost Schaafsma, and
Roberto Sebastiani. The MathSAT5 SMT solver. In TACAS, volume
7795 of LNCS, pages 93–107. Springer, 2013.

Koen Claessen and Niklas Sörensson. A liveness checking algorithm
that counts. In FMCAD, pages 52–59. IEEE, 2012.

Edmund M. Clarke and E. Allen Emerson. Design and synthesis
of synchronization skeletons using branching-time temporal logic.
In Logic of Programs, volume 131 of LNCS, pages 52–71. Springer,
1981.

Edmund M. Clarke, Orna Grumberg, Somesh Jha, Yuan Lu, and
Helmut Veith. Counterexample-guided abstraction refinement. In
CAV, volume 1855 of LNCS, pages 154–169. Springer, 2000.

Orly Cohen, Moran Gordon, Michael Lifshits, Alexander Nadel, and
Vadim Ryvchin. Designers work less with quality formal equiva-
lence checking. In Design and Verification Conference (DVCon). Cite-
seer, 2010.

Aurore Collomb-Annichini and Mihaela Sighireanu. Parameterized
reachability analysis of the IEEE 1394 root contention protocol us-
ing TReX. 2001.

Stephen A. Cook. The complexity of theorem-proving procedures.
In STOC, pages 151–158. ACM, 1971.

bibliography 193

Ron Cytron, Jeanne Ferrante, Barry K. Rosen, Mark N. Wegman, and
F. Kenneth Zadeck. Efficiently computing static single assignment
form and the control dependence graph. ACM Trans. Program.
Lang. Syst., 13(4):451–490, 1991.

Alexandre David, Jacob Illum, Kim G. Larsen, and Arne Skou.
Model-based framework for schedulability analysis using UP-
PAAL 4.1. Model-based design for embedded systems, 1(1):93–119,
2009.

Johan de Kleer and Brian C. Williams. Diagnosing multiple faults.
Artif. Intell., 32(1):97–130, 1987.

Maria J. García de la Banda, Peter J. Stuckey, and Jeremy Wazny.
Finding all minimal unsatisfiable subsets. In PPDP, pages 32–43.
ACM, 2003.

Leonardo Mendonça de Moura and Nikolaj Bjørner. Z3: an effi-
cient SMT solver. In TACAS, volume 4963 of LNCS, pages 337–340.
Springer, 2008.

J. L. de Siqueira N. and Jean-Francois Puget. Explanation-based gen-
eralisation of failures. In ECAI, pages 339–344. Pitmann Publish-
ing, London, 1988.

Arnaud Durand, Miki Hermann, and Phokion G. Kolaitis. Subtrac-
tive reductions and complete problems for counting complexity
classes. Theor. Comput. Sci., 340(3):496–513, 2005.

Alexandre Duret-Lutz, Alexandre Lewkowicz, Amaury Fauchille,
Thibaud Michaud, Etienne Renault, and Laurent Xu. Spot 2.0 -
A framework for LTL and ω-automata manipulation. In ATVA,
volume 9938 of LNCS, pages 122–129, 2016.

Bruno Dutertre and Leonardo De Moura. The yices SMT solver.
Tool paper at http://yices.csl.sri.com/tool-paper.pdf, 2(2):1–
2, 2006.

Matthew B. Dwyer, George S. Avrunin, and James C. Corbett. Prop-
erty specification patterns for finite-state verification. In FMSP,
pages 7–15. ACM, 1998.

Niklas Eén and Niklas Sörensson. An extensible SAT-solver. In SAT,
volume 2919 of LNCS, pages 502–518. Springer, 2003.

Niklas Eén, Alan Mishchenko, and Robert K. Brayton. Efficient im-
plementation of property directed reachability. In FMCAD, pages
125–134. FMCAD Inc., 2011.

E. Allen Emerson and Joseph Y. Halpern. Decision procedures and
expressiveness in the temporal logic of branching time. In STOC,
pages 169–180. ACM, 1982.

Ansgar Fehnker. Scheduling a steel plant with timed automata. In
RTCSA, pages 280–286. IEEE Computer Society, 1999.

http://yices.csl.sri.com/tool-paper.pdf

194 minimal sets over a monotone predicate: enumeration and counting

Alexander Felfernig, Monika Schubert, and Christoph Zehentner. An
efficient diagnosis algorithm for inconsistent constraint sets. AI
EDAM, 26(1):53–62, 2012.

Andrew Gacek, John Backes, Mike Whalen, Lucas G. Wagner, and
Elaheh Ghassabani. The JKind model checker. In CAV (2), volume
10982 of LNCS, pages 20–27. Springer, 2018.

Elaheh Ghassabani, Andrew Gacek, and Michael W. Whalen. Effi-
cient generation of inductive validity cores for safety properties.
In SIGSOFT FSE, pages 314–325. ACM, 2016.

Elaheh Ghassabani, Andrew Gacek, Michael W. Whalen, Mats
Per Erik Heimdahl, and Lucas G. Wagner. Proof-based coverage
metrics for formal verification. In ASE, pages 194–199. IEEE Com-
puter Society, 2017a.

Elaheh Ghassabani, Michael W. Whalen, and Andrew Gacek. Effi-
cient generation of all minimal inductive validity cores. In FM-
CAD, pages 31–38. IEEE, 2017b.

Carla P. Gomes, Ashish Sabharwal, and Bart Selman. Near-uniform
sampling of combinatorial spaces using XOR constraints. In NIPS,
pages 481–488. MIT Press, 2006.

Éric Grégoire, Jean-Marie Lagniez, and Bertrand Mazure. An experi-
mentally efficient method for (MSS, CoMSS) partitioning. In AAAI,
pages 2666–2673. AAAI Press, 2014.

Éric Grégoire, Yacine Izza, and Jean-Marie Lagniez. Boosting mcses
enumeration. In IJCAI, pages 1309–1315. ijcai.org, 2018.

Nan Guan, Zonghua Gu, Qingxu Deng, Shuaihong Gao, and Ge Yu.
Exact schedulability analysis for static-priority global multiproces-
sor scheduling using model-checking. In SEUS, volume 4761 of
LNCS, pages 263–272. Springer, 2007.

Ofer Guthmann, Ofer Strichman, and Anna Trostanetski. Minimal
unsatisfiable core extraction for SMT. In FMCAD, pages 57–64.
IEEE, 2016.

George Hagen and Cesare Tinelli. Scaling up the formal verification
of lustre programs with SMT-based techniques. In FMCAD, pages
1–9. IEEE, 2008.

Nicholas Halbwachs, Paul Caspi, Pascal Raymond, and Daniel Pi-
laud. The synchronous data flow programming language LUSTRE.
Proceedings of the IEEE, 79(9):1305–1320, 1991.

Benjamin Han and Shie-Jue Lee. Deriving minimal conflict sets by cs-
trees with mark set in diagnosis from first principles. IEEE Trans.
Systems, Man, and Cybernetics, Part B, 29(2):281–286, 1999.

bibliography 195

Fred Hemery, Christophe Lecoutre, Lakhdar Sais, and Frédéric
Boussemart. Extracting MUCs from constraint networks. In ECAI,
volume 141 of Frontiers in Artificial Intelligence and Applications,
pages 113–117. IOS Press, 2006.

Thomas A. Henzinger, Joerg Preussig, and Howard Wong-Toi. Some
lessons from the HYTECH experience. In Proceedings of the 40th
IEEE Conference on Decision and Control (Cat. No.01CH37228), vol-
ume 3, pages 2887–2892 vol.3, 2001.

Aimin Hou. A theory of measurement in diagnosis from first princi-
ples. AI, 65(2):281–328, 1994.

Bardh Hoxha, Houssam Abbas, and Georgios E. Fainekos. Bench-
marks for temporal logic requirements for automotive systems. In
ARCH@CPSWeek, volume 34 of EPiC Series in Computing, pages
25–30. EasyChair, 2014.

Shi-Yu Huang and Kwang-Ting Tim Cheng. Formal equivalence check-
ing and design debugging, volume 12. Springer Science & Business
Media, 2012.

Thomas Hune, Judi Romijn, Mariëlle Stoelinga, and Frits W. Vaan-
drager. Linear parametric model checking of timed automata. J.
Log. Algebraic Methods Program., 52-53:183–220, 2002.

Anthony Hunter and Sébastien Konieczny. Measuring inconsistency
through minimal inconsistent sets. In KR, pages 358–366. AAAI
Press, 2008.

Alexey Ignatiev, Alessandro Previti, Mark H. Liffiton, and João
Marques-Silva. Smallest MUS extraction with minimal hitting set
dualization. In CP, volume 9255 of LNCS, pages 173–182. Springer,
2015.

Alexey Ignatiev, Mikoláš Janota, and João Marques-Silva. Quantified
maximum satisfiability. Constraints An Int. J., 21(2):277–302, 2016.

Alexey Ignatiev, António Morgado, and João Marques-Silva. PySAT:
A python toolkit for prototyping with SAT oracles. In SAT, volume
10929 of LNCS, pages 428–437. Springer, 2018.

Alexander Ivrii, Sharad Malik, Kuldeep S. Meel, and Moshe Y. Vardi.
On computing minimal independent support and its applications
to sampling and counting. Constraints, 21(1), 2016.

Dietmar Jannach and Thomas Schmitz. Model-based diagnosis of
spreadsheet programs: a constraint-based debugging approach.
Autom. Softw. Eng., 23(1):105–144, 2016.

Mikoláš Janota and João Marques-Silva. On deciding MUS mem-
bership with QBF. In CP, volume 6876 of LNCS, pages 414–428.
Springer, 2011.

196 minimal sets over a monotone predicate: enumeration and counting

Mikoláš Janota and João Marques-Silva. On the query complexity of
selecting minimal sets for monotone predicates. Artif. Intell., 233:
73–83, 2016.

Zhihao Jiang, Miroslav Pajic, Rajeev Alur, and Rahul Mangharam.
Closed-loop verification of medical devices with model abstraction
and refinement. Int. J. Softw. Tools Technol. Transf., 16(2):191–213,
2014.

Aleksandra Jovanovic, Didier Lime, and Olivier H. Roux. Integer
parameter synthesis for timed automata. In TACAS, volume 7795

of LNCS, pages 401–415. Springer, 2013.

Aleksandra Jovanovic, Didier Lime, and Olivier H. Roux. Integer
parameter synthesis for real-time systems. IEEE Trans. Software
Eng., 41(5):445–461, 2015.

Philip Kilby, John K. Slaney, Sylvie Thiébaux, and Toby Walsh. Back-
bones and backdoors in satisfiability. In AAAI, pages 1368–1373.
AAAI Press / The MIT Press, 2005.

Hans Kleine Büning and Oliver Kullmann. Minimal unsatisfiability
and autarkies. In Handbook of Satisfiability, volume 185 of FAIA,
pages 339–401. IOS Press, 2009.

Hans Kleine Büning and Theodor Lettmann. Propositional logic - de-
duction and algorithms, volume 48 of Cambridge tracts in theoretical
computer science. Cambridge University Press, 1999.

Michal Knapik and Wojciech Penczek. Bounded model checking for
parametric timed automata. Trans. Petri Nets Other Model. Concurr.,
5:141–159, 2012.

Martin Kölbl, Stefan Leue, and Thomas Wies. Clock bound repair for
timed systems. In CAV (1), volume 11561 of LNCS, pages 79–96.
Springer, 2019.

Ron Koymans. Specifying real-time properties with metric temporal
logic. Real-Time Systems, 2(4):255–299, 1990.

Oliver Kullmann. An application of matroid theory to the SAT prob-
lem. In Computational Complexity Conference, page 116. IEEE Com-
puter Society, 2000a.

Oliver Kullmann. Investigations on autark assignments. Discrete Ap-
plied Mathematics, 107(1-3):99–137, 2000b.

Oliver Kullmann and João Marques-Silva. Computing maximal au-
tarkies with few and simple oracle queries. In SAT, volume 9340

of LNCS, pages 138–155. Springer, 2015.

Orna Kupferman and Moshe Y. Vardi. Vacuity detection in temporal
model checking. Int. J. Softw. Tools Technol. Transf., 4(2):224–233,
2003.

bibliography 197

Orna Kupferman, Wenchao Li, and Sanjit A. Seshia. A theory of mu-
tations with applications to vacuity, coverage, and fault tolerance.
In FMCAD, pages 1–9. IEEE, 2008.

Marta Z. Kwiatkowska, Alexandru Mereacre, Nicola Paoletti, and
Andrea Patane. Synthesising robust and optimal parameters for
cardiac pacemakers using symbolic and evolutionary computa-
tion techniques. In HSB, volume 9271 of LNCS, pages 119–140.
Springer, 2015.

Jean-Marie Lagniez and Pierre Marquis. A recursive algorithm for
projected model counting. In AAAI, pages 1536–1543. AAAI Press,
2019.

Kim Guldstrand Larsen and Wang Yi. Time-abstracted bisimulation:
Implicit specifications and decidability. Inf. Comput., 134(2):75–101,
1997.

Yau-Tsun Steven Li, Sharad Malik, and Andrew Wolfe. Efficient mi-
croarchitecture modeling and path analysis for real-time software.
In RTSS, pages 298–307. IEEE Computer Society, 1995.

Mark H. Liffiton and Ammar Malik. Enumerating infeasibility: Find-
ing multiple MUSes quickly. In CPAIOR, volume 7874 of LNCS,
pages 160–175. Springer, 2013. ISBN 978-3-642-38170-6.

Mark H. Liffiton and Karem A. Sakallah. Algorithms for computing
minimal unsatisfiable subsets of constraints. JAR, 40(1):1–33, 2008.

Mark H. Liffiton, Maher N. Mneimneh, Inês Lynce, Zaher S. An-
draus, João Marques-Silva, and Karem A. Sakallah. A branch and
bound algorithm for extracting smallest minimal unsatisfiable sub-
formulas. Constraints An Int. J., 14(4):415–442, 2009.

Mark H. Liffiton, Alessandro Previti, Ammar Malik, and João
Marques-Silva. Fast, flexible MUS enumeration. Constraints, 21

(2):223–250, 2016.

Didier Lime, Olivier H. Roux, Charlotte Seidner, and Louis-Marie
Traonouez. Romeo: A parametric model-checker for Petri nets
with stopwatches. In TACAS, volume 5505 of LNCS, pages 54–57.
Springer, 2009.

Shaofan Liu and Jie Luo. FMUS2: An efficient algorithm to compute
minimal unsatisfiable subsets. In AISC, volume 11110 of LNCS,
pages 104–118. Springer, 2018.

Florian Lonsing and Uwe Egly. Qratpre+: Effective QBF preprocess-
ing via strong redundancy properties. In SAT, volume 11628 of
LNCS, pages 203–210. Springer, 2019.

Jie Luo and Shaofan Liu. Accelerating MUS enumeration by incon-
sistency graph partitioning. Science China Information Sciences, 62

(11):212104, 2019.

198 minimal sets over a monotone predicate: enumeration and counting

João Marques-Silva and Mikoláš Janota. On the query complexity of
selecting few minimal sets. Electronic Colloquium on Computational
Complexity (ECCC), 21:31, 2014.

João Marques-Silva and Inês Lynce. On improving MUS extraction
algorithms. In SAT, volume 6695 of LNCS, pages 159–173. Springer,
2011.

João Marques-Silva, Federico Heras, Mikoláš Janota, Alessandro
Previti, and Anton Belov. On computing minimal correction sub-
sets. In IJCAI, pages 615–622. IJCAI/AAAI, 2013a.

João Marques-Silva, Mikoláš Janota, and Anton Belov. Minimal sets
over monotone predicates in boolean formulae. In CAV, volume
8044 of LNCS, pages 592–607. Springer, 2013b.

João Marques-Silva, Alexey Ignatiev, António Morgado, Vasco M.
Manquinho, and Inês Lynce. Efficient autarkies. In ECAI, volume
263 of FAIA, pages 603–608. IOS Press, 2014.

João Marques-Silva, Mikoláš Janota, and Carlos Mencía. Minimal
sets on propositional formulae. Problems and reductions. Artif.
Intell., 252:22–50, 2017.

Kenneth L. McMillan and Nina Amla. Automatic abstraction without
counterexamples. In TACAS, volume 2619 of LNCS, pages 2–17.
Springer, 2003.

Alain Mebsout and Cesare Tinelli. Proof certificates for SMT-based
model checkers for infinite-state systems. In FMCAD, pages 117–
124. IEEE, 2016.

Carlos Mencía and João Marques-Silva. Reasoning about strong in-
consistency in ASP. In SAT, volume 12178 of LNCS, pages 332–342.
Springer, 2020.

Carlos Mencía, Alessandro Previti, and João Marques-Silva. Literal-
based MCS extraction. In IJCAI, pages 1973–1979. AAAI Press,
2015.

Carlos Mencía, Alexey Ignatiev, Alessandro Previti, and João
Marques-Silva. MCS extraction with sublinear oracle queries. In
SAT, volume 9710 of LNCS, pages 342–360. Springer, 2016.

Carlos Mencía, Oliver Kullmann, Alexey Ignatiev, and João Marques-
Silva. On computing the union of MUSes. In SAT, volume 11628

of LNCS, pages 211–221. Springer, 2019.

Albert R. Meyer and Larry J. Stockmeyer. The equivalence problem
for regular expressions with squaring requires exponential space.
In SWAT (FOCS), pages 125–129. IEEE Computer Society, 1972.

Steven P. Miller, Michael W. Whalen, and Darren D. Cofer. Software
model checking takes off. Commun. ACM, 53(2):58–64, 2010.

bibliography 199

Sibylle Möhle and Armin Biere. Dualizing projected model counting.
In ICTAI, pages 702–709. IEEE, 2018.

Burkhard Monien and Ewald Speckenmeyer. Solving satisfiability
in less than 2

n steps. Discrete Applied Mathematics, 10(3):287–295,
1985.

Kedian Mu. Formulas free from inconsistency: An atom-centric char-
acterization in priest’s minimally inconsistent LP. J. Artif. Intell.
Res., 66:279–296, 2019.

Christian J. Muise, Sheila A. McIlraith, J. Christopher Beck, and
Eric I. Hsu. Dsharp: Fast d-DNNF compilation with sharpsat. In
Canadian Conference on AI, volume 7310 of LNCS, pages 356–361.
Springer, 2012.

Anitha Murugesan, Michael W. Whalen, Sanjai Rayadurgam, and
Mats Per Erik Heimdahl. Compositional verification of a medi-
cal device system. In HILT, pages 51–64. ACM, 2013.

Anitha Murugesan, Michael W. Whalen, Elaheh Ghassabani, and
Mats Per Erik Heimdahl. Complete traceability for requirements
in satisfaction arguments. In RE, pages 359–364. IEEE Computer
Society, 2016.

Alexander Nadel. Boosting minimal unsatisfiable core extraction. In
FMCAD, pages 221–229. IEEE, 2010.

Alexander Nadel, Vadim Ryvchin, and Ofer Strichman. Accelerated
deletion-based extraction of minimal unsatisfiable cores. JSAT, 9:
27–51, 2014.

Nina Narodytska, Nikolaj Bjørner, Maria-Cristina Marinescu, and
Mooly Sagiv. Core-guided minimal correction set and core enu-
meration. In IJCAI, pages 1353–1361. ijcai.org, 2018.

Radek Pelánek. BEEM: benchmarks for explicit model checkers. In
SPIN, volume 4595 of LNCS, pages 263–267. Springer, 2007.

Marek Piotrów. UWrMaxSat - a new MiniSat+-based solver in
MaxSAT Evaluation 2019. MaxSAT Evaluation 2019, page 11, 2019.

Amir Pnueli. The temporal logic of programs. In FOCS, pages 46–57.
IEEE Computer Society, 1977.

Alessandro Previti and João Marques-Silva. Partial MUS enumera-
tion. In AAAI. AAAI Press, 2013. ISBN 978-1-57735-615-8.

Alessandro Previti, Carlos Mencía, Matti Järvisalo, and João
Marques-Silva. Improving MCS enumeration via caching. In SAT,
volume 10491 of LNCS, pages 184–194. Springer, 2017.

Alessandro Previti, Carlos Mencía, Matti Järvisalo, and João
Marques-Silva. Premise set caching for enumerating minimal cor-
rection subsets. In AAAI, pages 6633–6640. AAAI Press, 2018.

200 minimal sets over a monotone predicate: enumeration and counting

Markus N. Rabe and Leander Tentrup. CAQE: A certifying QBF
solver. In FMCAD, pages 136–143. IEEE, 2015.

Markus N. Rabe, Leander Tentrup, Cameron Rasmussen, and San-
jit A. Seshia. Understanding and extending incremental deter-
minization for 2QBF. In CAV (2), volume 10982 of LNCS, pages
256–274. Springer, 2018.

Raymond Reiter. A theory of diagnosis from first principles. Artif.
Intell., 32(1):57–95, 1987.

Tian Sang, Fahiem Bacchus, Paul Beame, Henry A. Kautz, and To-
niann Pitassi. Combining component caching and clause learning
for effective model counting. In SAT, 2004.

Tian Sang, Paul Beame, and Henry A. Kautz. Performing bayesian
inference by weighted model counting. In AAAI, pages 475–482.
AAAI Press / The MIT Press, 2005.

Palash Sashittal and Mohammed El-Kebir. Sampling and summariz-
ing transmission trees with multi-strain infections. Bioinformatics,
36(Supplement_1):i362–i370, 2020.

Shubham Sharma, Subhajit Roy, Mate Soos, and Kuldeep S. Meel.
GANAK: A scalable probabilistic exact model counter. In IJCAI,
pages 1169–1176. ijcai.org, 2019.

Mary Sheeran, Satnam Singh, and Gunnar Stålmarck. Checking
safety properties using induction and a SAT-solver. In FMCAD,
volume 1954 of LNCS, pages 108–125. Springer, 2000.

A. Prasad Sistla and Edmund M. Clarke. The complexity of proposi-
tional linear temporal logics. J. ACM, 32(3):733–749, 1985.

Mate Soos and Kuldeep S. Meel. BIRD: engineering an efficient CNF-
XOR SAT solver and its applications to approximate model count-
ing. In AAAI, pages 1592–1599. AAAI Press, 2019.

Mate Soos, Karsten Nohl, and Claude Castelluccia. Extending SAT
solvers to cryptographic problems. In SAT, volume 5584 of LNCS,
pages 244–257. Springer, 2009.

Mate Soos, Stephan Gocht, and Kuldeep S. Meel. Tinted, detached,
and lazy CNF-XOR solving and its applications to counting and
sampling. In CAV (1), volume 12224 of LNCS, pages 463–484.
Springer, 2020.

Emanuel Sperner. Ein satz über untermengen einer endlichen menge.
Mathematische Zeitschrift, 27(1):544–548, 1928.

Roni Tzvi Stern, Meir Kalech, Alexander Feldman, and Gregory M.
Provan. Exploring the duality in conflict-directed model-based di-
agnosis. In AAAI. AAAI Press, 2012.

Peter J. Stuckey, Martin Sulzmann, and Jeremy Wazny. Interactive
type debugging in haskell. In Haskell, pages 72–83. ACM, 2003.

bibliography 201

Matthias Thimm. On the evaluation of inconsistency measures. Mea-
suring Inconsistency in Information, 73, 2018.

Marc Thurley. sharpsat - counting models with advanced component
caching and implicit BCP. In SAT, volume 4121 of LNCS, pages
424–429. Springer, 2006.

Leslie G. Valiant. The complexity of enumeration and reliability
problems. SIAM J. Comput., 8(3):410–421, 1979.

Farn Wang. Formal verification of timed systems: a survey and per-
spective. Proceedings of the IEEE, 92(8):1283–1305, 2004.

Michael W. Whalen, Darren D. Cofer, Steven P. Miller, Bruce H.
Krogh, and Walter Storm. Integration of formal analysis into a
model-based software development process. In FMICS, volume
4916 of LNCS, pages 68–84. Springer, 2007.

Michael W. Whalen, Gregory Gay, Dongjiang You, Mats Per Erik
Heimdahl, and Matt Staats. Observable modified condi-
tion/decision coverage. In ICSE, pages 102–111. IEEE Computer
Society, 2013.

Siert Wieringa. Understanding, improving and parallelizing MUS
finding using model rotation. In CP, volume 7514 of LNCS, pages
672–687. Springer, 2012.

Dongjiang You, Sanjai Rayadurgam, Michael W. Whalen, Mats
Per Erik Heimdahl, and Gregory Gay. Efficient observability-based
test generation by dynamic symbolic execution. In ISSRE, pages
228–238. IEEE Computer Society, 2015.

Lintao Zhang and Sharad Malik. Extracting small unsatisfiable cores
from unsatisfiable boolean formula. SAT, 3, 2003.

	Introduction
	Structure of the Thesis
	Author's Publications and His Contribution

	Preliminaries
	Propositional Formulae
	Minimal and Maximal Sets over a Monotone Predicate
	General Properties of Minimal and Maximal Sets over a Monotone Predicate
	Related Work

	I Domain Agnostic MUS Enumeration
	The Role and Applications of Domain Agnostic MUS Enumeration Algorithms
	Requirements Analysis
	Formal Equivalence Checking
	Safety Properties Checking
	Worst-Case Execution Time Analysis

	Domain Agnostic MUS Enumeration
	Notation
	Seed-Shrink Scheme
	TOME
	ReMUS
	Related Work
	MUST: A Domain Agnostic MUS Enumeration Tool
	Experimental Evaluation
	Discussion About Results And Recommendations

	II MUS and MSS/MCS Enumeration in the Boolean CNF Domain
	Boolean CNF MUS Enumeration
	Notation
	Algorithm
	Related Work
	Experimental Evaluation

	Boolean CNF MSS and MCS Enumeration
	Notation
	Algorithm
	Related Work
	Experimental Evaluation

	III MUS and MSS/MCS Counting in the Boolean CNF Domain
	Boolean CNF MUS Counting
	Preliminaries and Problem Formulation
	Related Work
	AMUSIC: A Hashing-Based MUS Counter
	Experimental Evaluation
	Summary and Future Work

	Boolean CNF MSS and MCS Counting
	Prelimilaries and Problem Formulation
	Related Work
	Counting the Number of MSSes
	Experimental Evaluation
	Summary and Future Work

	IV Minimal Inductive Validity Cores
	Minimal Inductive Validity Cores
	Preliminaries
	Related Work
	Algorithm
	Implementation
	Example Execution
	Experimental Evaluation
	Summary and Future Work

	V Minimal Sufficient Reductions
	Relaxing Timed Automata For Reachability
	Preliminaries
	Minimal Sufficient (D,I)-Reductions
	Synthesis of Relaxation Parameters
	Case Study
	Summary and Future Work

	Bibliography

